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PART 11

o E &, CHAPTER 1

INTRODUCTION

In this part we present some of the basic theory of aperture synthesis and related techniques. Our intention
isto present a text which can be used by astronomers who need to refresh their basic knowledge of aperture
synthesis. Scientistsfor whom thistext isthefirst encounter with radio interferometry are advised to read one
of the books discussed in section 9.1.

The WSRT is an aperture synthesis telescope. It combines thousands of interferometer measurements to
construct an image as if thisimage was measured by a large single aperture antenna. The quantity that is
measured by an interferometer is called a visibility. From a set of visibility measurements one can obtain a
brightness distribution using a Fourier transformation.

In chapter 2 we explain how an interferometer can be used to measure the visibility. In chapter 3 we explain
how we obtain a brightness distribution from the visibilities. The Fourier transformation and itsproperties are
discussed in chapter 4.

Although the Fourier transformation from visibility to brightness distribution seems rather straightforward
there are anumber of complications. One of those complicationsis for example that visibilitiesare measured
as function of baseline separation and orientation. In order to get a complete and unambiguous description of
the brightnessdistributionone needsto measure thevisibilityin al orientationsand on all baselinelengthsfrom
zero out toinfinity. Thisis of course not possible. Another complication isthat the numerical implementation
of the Fourier transformation (Fast Fourier transformation) interpol atesthe visibility data onto a computational
grid. Both effects act asfilters and introduce artifacts in the astronomical images. In chapter 5 we explain the
effects of these and other “filters” and discuss the measures that are taken to reduce the unwanted side-effects.
Our purpose is to obtain the fluxes or brightness temperatures as a function of position in RA,DEC on the
sky, in chapter 6 we discuss the coordinate systems used in Westerbork. In chapter 7 we discuss the relation
between temperatures and brightness. We a so discuss how the sensitivity of atelescope can be calculated. We
only discussthetheory, for the sensitivity of the WSRT see part 111 (* Specific Aspects of the WSRT Synthesis
Telescope™), chapter 2.

The whole discussion in chapter 2, 3, and 5 applies to ‘monochromatic’ images. In practice more frequency
bands (channels) are measured at the same time. The rel ations between these measurements and the frequency
spectrum are roughly the same as the relations between visibility and brightness distribution. The Fourier
rel ations between the measurement and the spectrum and the artifactsintroduced when producing spectra are
discussed in chapter 8.

The closing chapter (9) contains a bibliography and references to important articles. We also included a
dictionary to help you cope with jargon.
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o E =&y CHAPTER 2

THE MEASUREMENT OF VISIBILITIES

by Olaf Kolkman. Based on texts and pictures of the books discussed in section 9.1

In this chapter we will define visibility and we will show how visibilities are measured with a simple
interferometer. We keep the mathematical description as simple and as genera as possible.

Notation: Because we ded with electromagnetic waves, a complex quantity, we use the notation = =
|z|e/®= = |z| (cos(®) + j Sin(P)) where |z| isthe amplitude and arg(z)=® is the phase of the wave. We will
denote the rea and imaginary part of z by R(z) = |z| cog(®) and (=) = |z| Sin(P) respectively. Boldfaced
letters like s denote vectors.

2.1 THE BASIC EQUATION OF APERTURE SYNTHESIS

The basic relation of aperture synthesis can be written as:

V(D)) = /B’(a)e—ﬂ”DwdQ (2.1)
47

where V(D, ) is a complex function called the visibility function. It can be messured using a two element
interferometer separated by the vector Dy, whose length is expressed in units of wavelength. o is the
difference between an arbitrary direction vectors and the pointing direction vector of the telescope s, which
aso isreferred to as the phase reference point or phase center.  The quantity B’(o) isdirectly related to the
brightness distribution of the source, the quantity we are interested in. The visibility V(D, ) can be measured
using a correlating interferometer.

The functional form of equation 2.1 isthat of a Fourier transform (chapter 4). Equation 2.1 can beinverted to
obtain B’(s) from which we can obtain thereal brightness distribution B(o).

Note that we used a generalized coordinate system here. In order to invert equation 2.1 we have to choose a
specific coordinate system. A discussion of the coordinate system will be given in chapter 6.

2.2 A SIMPLE CORRELATING INTERFEROMETER

In this and the following section we will illustrate how in theory visibilities can be obtained using an
interferometer. In this treatment we use a simplified interferometer. A working interferometer is much
more complicated. We refer to Thompson et al. (1986) and Perley et al. (1989) for a more detailed and
compl ete discussion.

I-2-1
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Telescope 1 D) Telescope 2

Figure2.1: A simpleinterferometer

2.2.1 RESPONSE TO A MONOCHROMATIC POINT SOURCE

The response of a simple correlating interferometer to a point source radiating monochromatic radiation is
a sinusoidal function whose frequency depends on the spacing between the antennas and the direction of
viewing.

Consider two identical parabolic mirrors separated by a vector D, (figure 2.1) measuring monochromatic
radiation of frequency v from a point source in the direction 5.  |D, | is expressed in units of wavelength.
S isavector of unit length. We will assume a plane parallel wavefront and ignore atmospheric and other
disturbances.

The signal in telescope 2 will be proportional to sin(2xvt). The signal in telescope 1 will be phase shifted by
an amount 277, where 7, isthe geometrical delay. It can be shown that 7, = D, - S. The response of a
multiplying correlator will be:

r o 28in2rvt)Sin2rv(t — 7))
= cos2rvT, — COS(4rvt) COS(2T1T,)
—sin(4rvt)sin(2mvTy) (2.2)

The sine and cosine terms with ¢ are oscillating rapidly. These high frequency terms (cos(4rvt) cos(2rv T, )
and sin(4rvt) Sin(2rv,)) are filtered out leaving the low frequency term:

r o< F(Dy, s) = cos2rvt, = cos(27D, - 5) (2.3

When tracing the point source, the direction of the vector s, varies with time so the output of the correlator
will be asinusoida function /' depending on D, and 5. The function 7 is called the fringe function. The
frequency of F'isafunction of |D,| (figure2.2).

2.2.2 RESPONSE TO A MONOCHROMATIC EXTENDED SOURCE

We have shown above what the response of an interferometer to a monochromatic point source is. We will
now investigate what the response of a simple interferometer to an extended source is. We will define the
visihbility.

Let us now point our simple interferometer at an extended source with surface brightness B(¢), radiating
quasi monochromatically at afrequency v in aband of width dv.

The telescopes are pointed towards the center of the source in the direction sp; this point isreferred to as the
phase reference point or the fringe stopping center. A sky area of size dQ in the direction s = 55 + o will
contributeacomponent of power in each of theantennasthat isproportional to A(c) B(o)dv, where A(¢) isthe
reception pattern or power pattern which describesthe sensitivity of the antenna el ement for radiation coming

Version: 1.0.0 August 17, 1993
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Figure 2.2: The fringe function for two different tele-
scope spacings Dy, = 3and Dy = 5. Theangled isthe
hour anglein radians. The amplitudeis normalized.

from different directions. The output of the correlator due to radiation from direction swill be proportiona to
the power in the antennas from direction s and the fringe function in direction s, (D, s) = F(Dx, S + o).
The response of the interferometer to radiation from the source can be obtained by integrating over the source,
assuming that signals from two different directionsdo not correlatei.e. the sourceis spatially incoherent:

r(Dx, %) = dVA(O)/AN(U)B(U) cos [(Zﬂ'D)\ (s0+ 0')] dQ
= dvA(0)cos(27D, - ) / An(o)B(c)cos(27D, - 0)dQ
—dvA(0)sin(2zD, - %) / An(o)B(o)sin(2aDy - 0)dQ (2.4

47

where Ax (o) = A(0)/A(0) is the normalized antenna reception pattern.  We remind you that »(Dy, So)
should be read as the response of a correlating interferometer with baseline vector D, pointed at .
We now define the visibility as

V= / B'(0)e?mPx9)gQ = |V}l PV (2.5)
47

The phase of V, @y, is measured relative to the phase reference point at S, and B'(0) = An(c)B(o) isthe
modified brightnessdistribution. The real and imaginary parts of V' can be separated so we obtain:

/AN(U)B(U) cos(27Dy - 0)dQ = |V|cos®y (2.6)

47

Version: 1.0.0 August 17, 1993
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/AN(O')B(O')Sin(Zﬂ'D)\~O')dQ = —|V|sn®y (2.7

47

Substituting 2.6 an 2.7 in 2.4 we can rewrite the response as:
7(Dx, %) = dv A(0)|V| cog(27D) - 59 — Py) (2.8)

The equation above also demonstrates that the response to a monochromatic extended source, i.e. the output
of the correlator, is a fringe pattern with a frequency corresponding to that of a hypothetical point source at
the position 5. The amplitude of the fringes is proportional to the visibility and when phases are measured
relative to the response of the source at 5, then the phase of the response isthat of the visibility.

If wetake acloselook at the equation above we can see that the response to a monochromeatic extended source
isadirect measure of the visibility as defined in equation 2.5. The amplitude of the fringesis proportional to
thevisibility amplitude. And the phase of the response, relativeto the phasein direction s, isthe phase of the
visibility, ®y.

Note that:

- We are using generalized coordinates. In practice a coordinate system will be used in which the visibility
and the responseis only afunction of projected baselines (u, v) (Vu? + v? = D, - S).

- The response to a point source at s is exactly the response of a point source at s, but phase shifted by an
amount proportional to the difference in path length between the two telescopes if pointed at sinstead of s,
i.e. A® =27(D, -s— Dy - %).

2.3 DELAY TRACKING

2.3.1 THE EFFECT OF BANDWIDTH

In practice we will not have an infinitesimally bandwidth. Let usfirst consider the effect on the fringe pattern
if we are observing at two different frequencies, 11 and v, separated by afrequency Av. The two fringes will
add incoherently to a pattern as shown in figure 2.3.

At a certain phase A© there will be destructive interference. The correlator response, i.e. the product of the
visibility and the fringe function, will be zero at that phase and we can not measure anything at al. This sets,
at a given bandwidth, alimit on the geometrical delay 7, for which there is correlation. Using equation 2.3
we can calculate that F'(r,;) > 0for —7 > 2avr, > 7 so fringeswill be measurable only if Ar, < .
Ingeneral thefringe pattern has an envel ope determined by the Fourier transform of theinstrumental frequency
response, usually called the fringe washing function. Thisisdiscussed in Thompson et al. (1986, section 2.2
page 44). As an example we will show the effect of abox shaped bandpassfilter on the fringe pattern.

Let usfor the moment consider the simple case of the two element interferometer with areceiving system that
has uniform power response over a band of width Av centered on v (the bandshape function H (v) is zero
elsewhere). The antennas are pointed a a point source. The response to the point source in the infinitesimal
band dv at frequency v isaproduct of the modified brightnessdistribution B(sp), and the fringe function, 7'

dr = dvB(S) cos(2mvT,)
This hasto be integrated over all frequencies:

oQ

r = i dv B(so) cos(2rv7,) H(v)

vot+Av /2

= i / dvB(sy) cos(2rv7,)

vo—Av /2
in(TA
sin(w I/Tg)B

= cos(2rvoTy) Ao
g

%) (2.9)
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Figure 2.3: When two fringes of frequency » = 3 and
v = 3.5 are added an interference pattern will result.
At hour angle ¢ = 27 + 2kw(k € N') destructive
interference will occur

The sine function of the above equation determines the envelope of the sinusoidal fringe. The response is
shown in figure 2.4. Note that the amplitude of the response is only proportional to the visibility amplitude
forr, = 0.

2.3.2 DELAY TRACKING

We have seen that if we track a source using an interferometer with a finite bandwidth the amplitude of the
responsewill bemodulated by thefringewashing functioni.e. theFourier transform of the bandpass. To obtain
the highest response possible we delay the signal of one of the tel escopes by an amount 7; = 7, (= %DA - %0).
The effect of delay tracking when observing a point source at & is that the path length difference is reduced
to zero so the fringe term will be unity and we are measuring a constant signal proportional to the amplitude
of the point source.

The effect of delay tracking when measuring an extended source is more complex and can be understood from
inspecting equation 2.8 for adelay tracking tel escope:

7(Dx, ) = dv A(0)|V| cos(27Dy, - o — 277 — Py)

Integrating over frequency, remembering that the fringeterm D, - s — v7; is set to O and that the cosine
function is symmetric we obtain:
7(Dx, ) = CA(0)|V| cos®y, (2.10)

where C is an integration constant. From the above we see that using a delay tracking interferometer we
obtain |V| and dy.
At Westerbork a digital delay is implemented which corrects the signal at video frequencies. The delay is
implemented such that the delay is constantly changed as the hour angle of the pointing center changes. If
the delay would not be continuously changed the fringes would oscillate with the natural fringe frequency
(also see section 10.2 of part 111). The process of reducing the fringe frequency to zero by maintaining
27(Dy - 59— v1;) = Oiscalled fringe stopping or fringe rotation.

Version: 1.0.0 August 17, 1993
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Figure 2.4: The point-source response of an interfer-
ometer with a box shaped frequency passband. The
abscissaisthe geometrical delay 7,.

2.3.3 BANDWIDTH SMEARING

Another effect of using afinite bandwidth is bandwidth smearing. Bandwidth smearing distorts the edges of
large broadband (continuum) maps. Thisis due to the fact that different frequencies have different baselines
lengths (in units of wavelength). Fourier transforming the visibilities assuming a baseline length equal to the
geometrical baseline length divided by the centra wavelength will cause an underestimation of the baseline
length at lower frequencies and overestimation at the higher frequencies. This will introduce phase errors
which will lead to image distortions.

A mathematical treatment of these matters is given in chapter 13 in the textbook by Bridle and Schwab in
Perley et al. (1989).

Bandwidth smearing is aform of chromatic aberration.

2.4 SUMMARY

In the above we have shown that we can measure the phase and amplitude of the visibility of asource using a
delay tracking interferometer. We have also shown that the visibility is afunction of Dy, B(s), and s, only.
This means that the visibility can be expressed as a function of the projected baselines.

Remember that three assumptions are made;

1. Thesourceisat such adistance that the incoming radio rays are parallel to the antennas. Thisisavalid
assumption for most interferometers except for VLBI or millimeter interferometers observing objects
in the solar system.

2. The atmosphere does not influence the phase of the incoming waves and the equipment is stable. This
isof course never the case. See chapter 3in part 1V for more details.

3. Radiation from two different places in the source does not correlate i.e. the radiation is spatialy
incoherent. Thisisavery important assumption. When sources are not spatially incoherent therelation
between brightnessdistributionand visibility isnot asimple Fourier transform any more. (e.g. chapter 3

Version: 1.0.0 August 17, 1993
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in Thompson et al.(1986) or equation (1-3) in chapter 1 by Clark in Perley et al.(1989)). Theterm spatial
coherence function is sometimes used by authors as the quantity that is measured by interferometers.
The coherence function, I, isafunction of spatia frequencies u, v and time r. The real part of this
functionisbasically what is measured by the WSRT digital correlator. I'(u, v, 7) relatesto the visibility
as.

V(u,v,v) = / r(u,v,r)e_zm”dr (2.112)
where v isthe frequency of the observation.
Equation 2.11 is a temporal Fourier transform. It is of importance when discussing line observations.
For more detail s see the books mentioned bel ow.
For adiscussion of aperture synthesisin terms of the coherence function oneisalso referred to the books
mentioned bel ow.

The system described above is an ideal simplified interferometer. Keep in mind though that in a working
interferometer the signal is being processed by amplifiers, filters, mixers, etc, each having their own gain and
introducing phase shiftsto the signal.

2.5 REFERENCES

Perley, R.A., Schwab, F. and Bridle, A.H. (Editors) (1989): “ Synthesis Imaging in Radio Astronomy” .
Astronomical Society of the Pacific.. 1SBN:0-937707-23-6. (see also review in part 11 Chapter 9.1,
Book 2).

Thompson, A.R., Moran, JM. and Swenson Jr., G.W. (1986): “Interferometry and Synthesis in Radio
Astronomy” . John Wiley & Sons, New York.. 1SBN 0-471-80614-5. (See also review in part |l
Chapter 9.1, book 3).
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RECOVERING THE BRIGHTNESS
DISTRIBUTION

Based on a text from the old WSRT manual that was edited by A.G. Willisand originally based on articles by
J.A.Hogbom, RH. Harten and W.N. Brouw.

In chapter 2 we have seen that an interferometer measures complex visibilities V(u, v) and that the visibility
function can be transformed to obtain the brightness distribution.

3.1 IMAGE FORMATION AND FIELD OF VIEW

Let us rewrite equation 2.1 in the appropriate coordinates

V(u,v) = / /f(l,m,60)AN(1,m)B(l,m)e‘jz”(“’+”m)dldm (3.1)

— 00 —0O0

Thefunction f({, m, 80) contains someadditional terms(e.g. deviationsfromtheideal interferometer behavior)
which must be corrected for in the actual data reduction but need not be considered here further.
We may invert equation 3.1, by means of an inverse Fourier transform, to obtain

oQ

B(l,m)AN(l,m):m/ /V(u,v)e_zw(“l'l'vm)dudv (3.2

— 00 —OQ

In practice we are not able to measure at al spacings, or (w«, v) points, out to infinity so let us see how the data
issampled.
Because B(!, m) and Ay B(l, m) arereal functionsof ({, m) it can be shown from the propertiesof the Fourier
transform that

V(—u,—v) = V*(u,v) (3.3)

Thus it is sufficient to measure the complex visibility V(u, v) over two adjacent quadrantsin the (u, v) plane
since the datain the other half of the plane can be determined from equation 3.3.

1See chapter 6 for a discussion of the coordinate system which is used here. To understand this discussion it is enough to know that
the !, m coordinatesare used to describe the brightnessdistribution and the «, v coordinatesare used to describethe visibility distribution

-3-1
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Figure 3.1: If we observe a source at a declination of
30°, withastandard line-setup, for aperiod of 12 hours,
we will cover the (u, v) plane with 38 dlipses (or 40
depending on the position of the movable tel escopes).

For an E-W interferometer we can rewrite the «, v coordinates as a function of baseline length and source
positionin declination and hour angle (cf. 6.3 and 6.4 in chapter 6)

v = D,coshg
vo= D,\sinhosincSo

It can be seen from these equations that when an interferometer tracks a source over arange of hour-angles,
the projected interferometer baseline will trace out an ellipsein the (u, v) plane. Ina 12 hour measurement,
during which the earth rotates the interferometer baselines over 180°, all quadrantsinthe (u, v) planewill be
covered with ellipses because of the symmetry of the visibility function (V(—u, —v) = V*(u, v)).

In a 12 hour measurement the WSRT (in standard line setup) samples 40 elipses 2 in the (u, v) plane. The
dlipticity depends on the declination of the source. The size of the major axis of a certain elipse depends
on the distance between two particular telescopes. An example is shown in figure 3.1. When a redundant
configuration is used up to 91 elipses, of which about half will overlap with others, can be produced.

2N.B. actually 38 baselines are sampled most of thetime, as 0A=9C and 0B=9D

Version: 1.0.0 August 17, 1993
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THE FOURIER TRANSFORMATION

Based on a text from the old WSRT manual. The text was originally edited by A.G. Willis based on articles
by J.A.Hogbom, W.N.Brouw and RH.Harten. The text has been updated and the original figures have been
redrawn by O.M. Kolkman

4.1 INTRODUCTION

In the previous chapters we have shown that we can, in theory, obtain a brightness distribution from visibility
data using Fourier transforms. In this chapter we review the basic theory of those transformations.

4.2 THE FOURIER TRANSFORM

The Fourier transform of the function f() isdefined as

F(s) = / F(2)e™977 o 4.1)
Theinversetransformation is defined as;
flx) = / F(s)ed?™ ds 4.2)

In the two dimensional case the definitions are similar. The Fourier transform and itsinverse are written as

oQ

Fluv) = / / fla, y)e I 2 @utyv) g dy (4.3)

— 00 —OQ

oo o0

fle,y) = //F(u,v)eﬂ”(”"'y”)dvdu (4.9)

— 00 —OQ

The propertiesof the Fourier transform are described in several text booksamong which the book by Bracewel |
(1978) is a standard work. Several properties relevant to the subject of image processing are described in
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Gonzalez and Wintz (1987). Thisbook a so has a description of the fast Fourier transform (FFT) which isthe
algorithm used in most of the computer applications.
Fourier transformation can be conceived more easily if we rewrite equation 4.2 in adiscrete form:

N-1

Flai) =y F(ug)el2rone/N (45)

k=0

fore; = iAx fori =0,1,2,..N — 1land u;, = kAuforu=20,1,2,.N -1

We see that the function f(z) is the sum of complex oscillators (F'(u)e/274=/N) of frequency w, with an
amplitude | F'(«)| and phase shifted by an amount arg(7'(«)). The Fourier transform projectsthe function f(x)
on F'(u) i.e. decomposes the function f(«) in oscillators.

The amplitude | F'(u)| is often called the Fourier spectrum of f(x). It describes the relative contribution of
an oscillator with frequency w in f(z).

4.3 THE IMAGE AND SPECTRAL DOMAIN

In radio astronomy one often talks about the image or spatial domain and spatial frequency or u, v-domain.
In theimage domain information is available in the way most people conceive information of objectsi.e. asa
brightnessdistributionas afunction of x andy. The spectral domainisamore abstract domain. It both contains
the relative amplitudes as well as the phases of the oscillators describing structures with spatia frequencies
(u,v)

The Fourier transform transforms objects in the first domain into the second domain. A large structurein the
spatial domainwill giveriseto power at apointinthe(w, v)-plane near theorigin. Thereciprocal of v/u? + v2
isameasure of the size of structure and the amplitude of the complex visibility point is a measure of power.
Notethat « and v arereal but V(u, v) isacomplex number. Small structuresin the brightness distributionwill
giveriseto structure extending far from the origin of the (u, v)-plane.

Using synthesis techniquesthe visibilitiesare measured. As stated in equation 2.1 the brightness distribution
is the Fourier transform of the visibility. The visibility is a function in the spectral domain and contains
information about the spatial frequenciesin the measured object.

Somefunctions f(x, y) and their Fourier Transform F'(u, v) are showninfigure4.1. They may beinterpreted
as brightness distributions and their associated visibilities.

4.4 SOME IMPORTANT FOURIER RELATIONS

Some of theimportant theorems about the properties of Fourier transforms are summarized below. The reader
isreferred to Bracewell (1978), Chapter 6, for derivationsand proofs.

SIMILARITY THEOREM  Scaling of the argument of afunction will scale the Fourier transform of that function
and the argument of that Fourier transform.
If f(z) = F(s) then f(ax) = |a|"1F(s/a).

ADDITION THEOREM (@ so called the linearity theorem)
TheFourier transform of asum of functionsequal sthe sum of the Fourier transformsof theindividual functions.

If g(x) = G(s), f(x) = F(s), h(x) = H(s) and h(x) = f(z) + g(x) then H(s) = F(s) + G(s).
TRANSFORMATION OF FUNCTIONS  Let us define even and odd (complex) functions. A function f.(x) iseven

if fo(—2) = fe(2). Afunction f,(z) isoddif f,(—z) = —f,(x). The Fourier transform of an even function
iseven. The Fourier transform of an odd functionis odd. In generd a complex function f(«) can aways be
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Figure 4.1: Some functions f(z) and their Fourier
transforms F(s) are drawn. The « relates to s
as s = 1. The shah function is defined as

H(X)= 3" 6(x—n). Theshahfunctionisimpor-

tant when sampling data. The sinc function is defined
assince = 302 |tsFourier transform, the unit rectan-
glefunctionisdefined asMN = 1for || < 2andM = 0
for |z| > 1.
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4+12+6+16+10+2+1

109*9(x) 51

Figure 4.2: Pictorial explanation of convolution; As-
sumewewant to convol vetwo (discrete) functions f ()
andg(z)toobtainh(z) = f(x)+g(x). Tofindthevaue
of h(x1) we have to shift the function ¢(¢) in such a
way that the origin of the dummy variable ¢ is on the
position of z; then we have to multiply al the values
flz1—23)...f(x1+3) by g(—3)...9(3) respectively and
then add them up.

separated in an even and odd part. How functionstransform is shown in the diagram bel ow.

F(5) = Fo(a)+ L(5) = Rfule) + 3, (0)+ RE(2) + 596, (2)
S

F(s) = Fo(s) + Fe(s) = RF,(s) + jSFo(s) + RE:(5) + jSFe(s) 45

SHIFT THEOREM  If the function f(x) is shifted horizontally in such away that the new function becomes
f(z + a), hen the Fourier transform of f(x+a) isthe Fourier transform of the original function f(z) phase
shifted by %745,

If f(z) = F(s) then f(z + a) = e ™ F(s)

CoNVOLUTION THEOREM  The convolution of two functions f(«) and g(«) isanother function ~(x) defined
as

h(x) = / flu)g(z — u)du 4.7

We denotethe convol ution of two functionsby an asterisk () eg. A(x) = f(x) * g(z). Werefer to Bracewell,
chapter 3, for more information about the properties of a convolution.

Convolutionis a process in which afunction f(x) is smoothed by afunction g(z). In figure 4.2 we give a
pictorial explanation of the convolution process. An example of aconvolutionis shown in figure 4.3.

In radio interferometricimaging we encounter convol ution when looking at brightness distributions smoothed
by antennapatterns, when dealing with el ectronical signalsand filters(e.g. effect of bandwidth), when digitally
sampling datain the backends of the receiving system and in many other cases
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Figure4.3: Theconvolutionof adiscretefunction f(z)
with a smooth function g(x). The dashed lines are the
convolutionsof ¢(z) with theindividual spikes.

The convolution theorem states that the Fourier transform of the convolution of two functions equals the
product of the two Fourier transforms of these functions.
If f(2) = F(s)and g(x) = G(s) then f(z) * g(x) = F(s)G(s)

COMPLEX CONJUGATES The complex conjugate of »z = |z|e?- equals z = |z|e~%- The Fourier transform
of the complex conjugate of a function f(x) is F*(—s), that is, the ‘mirror image’ of the conjugate of the
transform.

[ () = F(=s) (4.8)

CORRELATION  The correlation of two functions f(«) and ¢(«) is another function ~(z) defined as
W= [ £a=ogtdu= [ 5@+ 2 (4.9

where f* () isthe complex conjugated of f(x) We denotethecorrelation of two functionsby asmall circle (o)
eg. h(z) = f(x) o g(x). In contrast to the convolutionwhere f + g = ¢ * f, the correlation function is not
commutative

f(x)og(x) # g(x)o f(x)
It can be shown that

f(x) o g(x) = F*(s)G(s) (4.10)

SAMPLING THEOREM  If we sample afunctionwe evaluate thefunction at discrete points. In fact we multiply

the function by a series of deltafunctions separated by intervals Az.

Sampling is encountered at many placesin synthesisimaging. Some examples:

- In the backend of the receiver the output signal is measured at discrete time steps.

-The u, v planeisnot completely covered because of the discrete spacing of the antennas.

-A computer cal cul ates the Fourier transform by approximating the Fourier integral by asum (cf. equation4.5).

The function under consideration is evaluated at discrete intervals.

The (Wittaker- Shannon or Nyquist) sampling theorem states that if a function f(«) is bandwidth limitedi.e.
the Fourier transform of f(«) vanishes for vaues of s outside theinterval [—W, 1¥], then the function f (=)

can be recovered completely if f(«) issampled at arate Az for which:

1
< = 411
Ax < T ( )
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If the sampling rate does not satisfy this criterion (the Nyquist rate) aliasing will occur. Thisisillustrated in
figure4.4

The sampling theorem is derived in Thompson al. (1986) section 4.11, Gonzalez and Wintz (1987) section
3.3.9 and in chapter 10 of Bracewell.
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Chapter 9.1, book 3).
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Figure 4.4: Sampling of a function f(x) is done by
multiplying it with a sampling function s(z), the pro-
cess is shown in the left hand side of the diagram. In
the Fourier domain the multiplication is equivaent to
a convolution. The Fourier transform of the sampling
function is convolved with the Fourier transform of
f(x), right-hand side of thediagram. Thesampling the-
orem givesalimit on Az for which thereisno aliasing
and in which case the function f(z) can be recovered
from the data. Note that in this example aliasing will
affect the high frequencies only because the function
is nearly bandwidth-limited, thisis not generally true.
Synthesized images may contain aliased sources at any
position.
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PART 11

e oSt eenay CHAPTERS

FAST FOURIER TRANSFORM EFFECTS

Based on text fromthefirst chapter of the old WSRT manual. That chapter was edited by A.G. Willisbased on
articles by J.A.Hogbom, RH. Harten and W.N. Brouw. The text has been re-edited and the figures have been
redrawn by O.M. Kolkman

In the preceding chapters we have shown how a brightness distribution can be obtained from a set of visibility
measurements. We also reviewed the properties of the Fourier transform. In this chapter we discuss the
artifacts introduced because the visibility must be sampled on a finite grid before a fourier transformation
can be applied. We aso discuss how these artifacts can be reduced and show what their appearanceisin an
astronomical image.

5.1 FAST FOURIER TRANSFORM EFFECTS AND A SUMMARY OF THE FUNC-
TIONAL RELATIONSHIPS INVOLVED IN APERTURE SYNTHESIS

In this chapter we will show how we compute Fourier transforms of our visibility function.

Calculating the inverse of equation 2.1.(i.e equation 3.2) is accomplished by a discrete digital agorithm
caled the Fast Fourier Transform (FFT). The details of this procedure need not concern us here (refer to e.g.
Bracewell (1986), chapter 18, or Gonzalez and Wintz (1987), section 3.4) but the FFT techniques require the
visibility data)’(u, v) to be sampled at an evenly spaced rectangular grid of locationsinthew, v plane. Instead
we have measured V(u, v) aong a series of elipsesinthe «, v plane. It istherefore necessary to interpolate
the measured V(u, v) onto arectangular sampling grid by using a suitable convolving function, i.e. afunction
whose Fourier transform has negligible sidel obes outside the area of interest. Often a Gaussian or a prolate
spheroidal functionisused. We effectively distributethe values of V(u, v) over the rectangular sampling grid
with a weight that decreases as the distance of the rectangular sampling locations increases from the actual
V(u, v) messurement locationson the u, v elipses.

We will now incorporate the effect of this extra convolution and the discrete Fourier transform into the
following summary of data manipulation procedures which take place when we make a map of the sky by
means of aperture synthesis.

Let us show what happens in a simple pictorial form. In this description we will use the notation of the
previous subsectionsi.e. small letters represent functionsin the «, v plane and capital letters represent their
Fourier transforms in the sky plane ({, m coordinates). Also the dot symbol (-) represents multiplication, an
asterisk () represents convolution and adoublearrow (=) representsaFourier transform. Thusa-b = A+ B
represents the convol ution theorem.

We define our functions as follows:
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Functionsin «, v plane Their Fourier transform

b sourcecomplexvisbilityfunction(infigurefig- | B sky brightnessdistribution (in figure 5.1 apoint
ure 5.1 we only show the (constant) visibility Source)
amplitude)

a average spatia frequency sensitivity function | A average primary beam power pattern of an in-
of asingle antenna dividua 25-m antenna

¢ radia sampling functionin «, v plane
t taper functioninu, v plane
e convolution function to arectangular «, v grid

radial grating function

taper function

Fourier transform of the convolution function
to the rectangular grid

f u,v planerectangular grid sampling function F field repetition function

m-=0

The functionsare depicted in figure 5.1.
Notethat V(u, v) as defined in equation 2.1 equals b * a as defined here; the grading function ¢ (u, v) as defined
insection 5.2 equalsc - ¢ and G({, m) also defined in that section is essentially, but not quite, equal to €'+ T'.
The output map of the WSRT datais not merely amap of aregion of the sky, but rather a map which has been
convolved and multiplied by several sampling and convolution functions. We begin our observing process
by pointing our antennas at a particular point in the sky. This region has a complex visibility function
b(u, v). We sample thisdistributionin two ways. First we limit our sky coverage by using highly directional
antennas. Secondly we only measure the complex visibility at discreteincrements (36 m, 72m, ...), therefore,
we actually observe a band of discrete spatial frequencies centered at each increment spacing. Over a 12 hour
observation, these bands trace out dlipses in the «, v plane. Thus we are measuring the convolution of the
complex visibility, b, and the antenna response, a, multiplied with a sampling increment function, ¢. Thisis
the nature of the data asit is put on tapein Westerbork.
The data is now ready for off-linereduction. Initidly it is calibrated and edited. (We will assume a perfect
calibration for now, the effect of bad calibration is discussed in part 1V chapter 3). After these corrections,
thedatais ready for the map making process. Three operations are performed on the data before it is Fourier
transformed. The data is tapered by some taper, ¢, or grading function (see note above). This will tend to
enhance the amplitude of certain spatia frequencies with respect to others. Then the data is convolved with
a Gaussian or prolate spheroida convolution function, e. This is necessary since, for the discrete Fourier
transformation routine we need to sample the data in the «, v plane with an evenly spaced rectangular grid
sampling function. After sampling we have the datain aform which can be Fourier transformed using the fast
Fourier transform method. Clearly, the output of this transform will not just be a map of the sky brightness
distribution, but the sky distribution multiplied or convolved with the Fourier transforms of the functionswith
which b(u, v) was convolved or multiplied respectively.
Let us examine what the data will look like at various stages of reduction. Assume we are observing a
theoretical point source at thefield center. The data, asit is collected at Westerbork, will consist of the source
complex visibility convolved with the antenna visibility response multiplied by the sampling function along
the baseline. This can be represented as

(bxa)-c

Then after calibration ataper is applied to the visibility data; givingit aform
(bxa)-c)-t
Then itisconvolved to arectangular grid in the «, v plane. Thuswe have,
((((bra)-c)-t)xe)-f
The datais now Fourier transformed, using afast Fourier transform method, yielding the output map
(((B-A)*«C)*T)-E)+F

The effect of these different functions can be seen infigure 5.2.
The behavior of these functionsin the sky plane can be described as follows. B isadeltafunction describing
atheoretical point source. A isageneral tapering of the map field by the single antenna response (i.e. the
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Figure5.1: Functionsinvolvedin the map making pro-
cess using the fast Fourier transformation, see text for
explanation
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Figure 5.2: The effect of the different functions in-
volved in map making using the fast Fourier transfor-
mation, see text for further explanation of the functions
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primary beam) . Thus a point source would appear weaker , the further one movesit from the field center. C
produces the grating rings. 7" smoothes the data in some manner to suppress the sidel obes of the synthesized
beam. I also tends to taper the data and decreases the grating ring response as a function of distance from
the source position. If £ isa Gaussian of narrow width, (or order of half the field size), then the height of
the grating rings will decrease quickly as the function of distance from the map center. Similar, if it is a
broad Gaussian, then the amplitude of the grating rings will decrease slowly as a function of distance to the
source position. This property of £ is most important when considered in connection with the function £'.
The function F' is the most bothersome one. It produces a repeating mosaic of the map field spaced on a
rectangular grid whose pointsare separated one map width apart. We thus have not asingle map but an infinite
grid of the same maps. This might not seem important until one realizes that when we produce a map of the
u, v data, we make amap of the entiresky. Weonly look at asmall portion of thissky map in our 512 x 512 or
1024 x 1024 pointsoutput map. Thisisquite reasonable since the primary beam haslimited our usablefield to
asmall portion of the sky. The grating rings however are tapered mainly by the multiplicationfunction £ and
may extend far beyond our usable field. Thus, any grating rings which might fall outside the field size of the
map might appear in the adjacent map. This produces the effect of ‘reflection’. (They are not true reflections,
but extensions from aiasing or an adjacent map.) To minimize this problem one should use a very narrow
width Gaussian E function, which would cut down the intensity of the overlapping or reflected grating rings.
The best solution would be to convolve the data to the rectangular grid with the aid of a convolving function
e of the form sinc(z) (i.e. S"‘Tx), then the function £ « F would be one in our primary map region and
zero dsawhere. Unfortunately, a sinc function convolution is very expensive in computer time. Figure 5.3
demonstrates the effect of different convolving functions. Both the multiplication function £ and the single
antenna beam will attenuate the flux of a source displaced from thefield center. To correct for thistwo things
are done. First, the map is multiplied by the inverse of the multiplication function £ in the sky plane. Thus
the output map becomes,

((((B-A)xC)«T) - E) + F) - (1/E) (5.1)

This has the effect of correcting properly for the multiplication function within the map, except that the
reflections do not have a proper correction and in general are too low. Thisis acceptable as long as you do not
wish to remove them. Note that equation 5.1 is essentially the same as equation 3.2.

We can aso correct for the primary beam attenuation by multiplying by 1/A. We can retrieve the proper
(convolved) sky brightness signal, but the noise everywhere in the map is aso multiplied by 1/A, which
increases toward the edges of the map.

5.2 SYNTHESIZED BEAM AND GRADING

We have shown that during an observation the «, v plane is not covered completely. Before calculating the
Fourier transform of equation 3.2 we introduce a grading function g(«, v) to weight the measurements. The
grading g(u,v) is set to zero for al spacings (u, v) a which there are no measurements. The product of
V(u, v)g(u, v) isthusin contrast tothevisibility V(u, v) itself, knownfor al values (u, v). Replacing V(u, v)
by this produces the integral of equation 3.2, we obtain from the convolution theorem in Fourier analysis

oQ

{(B(z,m)A(z,m)}*G(z,m):m/ /V(u,v)g(u,v)e‘zw(“l"'vm)dudv (5.2)

— 00 —OQ

where G({, m) istheFourier transform of the grading ¢(«, v). The convolutionof G({, m) with the expression
withinthe curly bracketsisequivalent to scanning the field with atelescope whose beam hasthe form G({, m).
Thus this function, normalized to unity at maximum, will be called the synthesized beam.

Thegrading function, ¢, can be considered asaspatia frequency filter. The spatial frequenciesin thebrightness
distribution are multiplied by thisfilter, so in theimage domain the brightness distribution is convolved with
the Fourier transform, 5.

Let us for the moment consider a one dimensional dlit. In optics the dlit acts like a spatia frequency filter.
The grading function for a dlit will be a boxcar function. The brightness distribution will thus be convolved
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Figure 5.3: A well choosen weighting function (taper,
grading) will reduce the power in the sidelobes. This
reduces reflections or aiasing
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with a sinc function (the Fourier Transform of a boxcar function). The intensity of a pattern projected by an
uniformly illuminated dlit is exactly this sinc function.

The synthesized beam is proportional to the Fourier transform of the grading ¢(«, v) whose form we may
chose as we desire within the measured area of the u, v plane. A uniform grading (g(«, v)=1, where data was
actually sampled) over thisareawill result in a beam with a-13% sidelobe. The sidel obes become smaller, at
the expense of a somewhat wider synthesized beam, if the grading function is tapered towards the outer edge
of the measured region so as to introduce a smoother transition from areas with data to areas without data.
The truncated Gaussian grading (tapered to 25% at the maximum baseline) used by default in Westerbork
reduction programes gives a-5% first sidelobe.

In angular measure, the shape of the synthesized beam is extended in declination by afactor 1/ siné. Thisis
obvious also from the fact that the sampled «, v planeisonly circular as viewed from the north celestial pole
and becomes dliptical withtheratio 1/ siné when seen from other declinations.

The standard grading resultsin a synthesi zed beam whose width between half power pointsis0.8/ D, radians
inright ascension and 0.8/( D siné) radiansin declination where D, isthe maximum interferometer spacing
in units wavelengths.

5.3 GRATING RESPONSES

During a 12h observation, the function V(u, v) is only measured along a set of liptical tracks in the u, v
plane. Thegrading, as defined in the previous subsection, isequal to zero between these tracks and the smooth
gradings discussed above give a simplified impression of the real situation. The finite number of measured
tracks results in a synthesized beam pattern (I, m), given by the Fourier transform of the true grading, in
which the central maximum is accompanied by a set of concentric grating ellipses. Expressed in radians
these grating ellipses have semi-axes k/AD, and k/(AD, siné) radians in right ascension and declination
directions, respectively where k isan integer and AD), istheregular baseline increment in wavelengths. The
amplitudeof agratingisinversely proportiona to the square root of itssemi-minor axis. Thus, to minimizethe
disturbances caused by the grating el lipses, the true baseline increments AD,, should be small. A normal 12-h
measurement taken with each group of two movable antennas separated by 72 m (half the spacing between
the antennas in the fixed position array) yields an array in which the baseline is increased by regular 72 m
increments.

This regularity then produces a set of eliptical grating responses whose semi-axes at awavelength of 21 cm
are multiples of 10 arc-minutes in right ascension and of 10/ siné arcmin in the declination direction. The
dimensionsof the ellipses, likethose of the synthesized beam are proportional to thewavelength. Infigure5.4
across-section is shown of the synthesized pattern including the first two grating responses. Adding a second
12-h measurement with the movable antennas shifted by 36 m will give a combined array with a regular
spacing of 36 m. This corresponds to grating ellipses with twice the previous size, i.e al the odd numbered
ellipses have been eliminated. after 2, 4, 8, etc. 12-h measurements with suitable positions of the movable
antennas, the remaining grating ellipses will be 2,4, 8 etc timesas distant asin the origina set of ellipses.

5.4 ERRORS, SDELOBES AND CONFUSION

Sidelobes of all kinds will degrade the synthesis map by giving rise to deflections on the map which are not
at the position of the source which is their cause. Sidelobes appear as a conseguence of the instrumental
design, the choice of observational procedure and missing observations due to equipment malfunctions. The
detailed shape of these can be calculated exactly and removed from the map by the CLEAN a gorithm. Other
map degenerations are caused by atmospheric phase fluctuations and by unavoidable, small departures of the
instrument fromitsideal calibrated performance like antenna dependent gain variations. These basically limit
thedynamic range but it isoften possibleto estimate their rms amplitudedistributioneither from measurements
or from a knowledge of the genera stability of the atmosphere and the critical parts of the instrument. In
principle the dynamic range can be improved by applying the SELFCAL (see eg. the NewStar software
descriptions) agorithm.

Version: 1.0.0 August 17, 1993



WSRT User Documentation, Part 11 section 5.4.0 page (11)-5-8

1st measuremanw/\/ \/\/w MNJL. SNV
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Grating ri ngsT

Figure 5.4: Schematically drawn cross-section of the
synthesized beam pattern including the cl osest two grat-
ing rings for a single 12 h measurement when the
two movable antennas are at 72 and 144 m respec-
tively from the closest antenna of the fixed array. If
instead the antennas are placed at 36 and 108 m re-
spectively, the first and all other odd-numbered grat-
ing elipses are reversed in amplitude as shown in the
second cross-section. Combining the two sets of mea-
surements, one can produce a map corresponding to a
synthesized beam in which &l the odd numbered rings
have been diminated. The remaining rings can be
eliminated by making further measurements with the
antennas in yet another settings of the movable tele-
SCopes.

Chapter 3 gives practical examples of maps distorted by calibration imperfections and other instrumenta and
atmospheric effects.

The set of grating ellipses discussed in the previous section is an example of the kind of sidelobe structure
which can be calculated exactly. The problem of separating sources from sidel obes can become serious when
the observed field contains sources which are larger in extent than the radius of the first grating responses
(or when sources fall on the position of the grating rings). must such cases the grating disturbances must be
eliminated, either by specia data reduction procedures such as CLEAN (Hogbom, 1974) or by adding further
12-h measurements.

No good quality measurements can be made at projected spacings which are smaller than the diameter of the
individua antennas (25 m) because then one antenna would be blocking (or shadowing) part of the aperture
of the other. Thusindependent of the number of 12-h observations completed, there will aways be a gap of
missing spacings centered at the u, v origin. Itsradiusis afunction of the smallest projected spacing actually
used, but will usualy be about 30m. The true grading of the synthesized aperture can therefore be written as:

g(u,v) = ga(u,v) — go(u, v) (5.3)

where g4(u, v) is the desired complete set of elipsesin the «, v plane and ¢, (u, v) represent those ellipses
close to the origin that have not been measured. The synthesized beam G({, m) is proportiond to the Fourier
transform of the grading and it followsthat:

G(1,m) = Gq(l,m) — G,(I,m) (5.4)

i.ethetrue synthesized beam equal s the desired beam minus abeam which correspondsto measurements taken
only at the missing small spacings. This latter isabroad low amplitude pattern. Thus, the global maximum
of the true synthesized beam will be surrounded by an extended low level negative sidelobe structure. The
integral over the entire synthesized beam pattern is equal to zero; thisisa conseguence of ¢(0, 0) = 0 and the
integral over asynthesis map must therefore a so be zero. The negative sidel obe regions produce a depression
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of the zero level which varies slowly over the map in away which depends upon the detailed distribution and
intensities of al sourcesin the field. This does not cause problems studying isolated small diameter sources,
because the local zero level is sufficiently well determined by the surrounding empty parts of the map, but
one has to be careful when calculating brightness temperature and flux densities of extended sources. These
problems are avoided if the synthesis measurements are complemented by a survey of the same field obtai ned
with afilled aperture tel escope whose diameter islarger than the radius of the central gap inthe «, v plane(see
eg. Rots, 1975. The extrapolation of large-scale structurein synthesismaps has al so been described by Braun
and Walterbos (1985)).

In some observations, notably at low declinations, it is unavoidable that shadowing of one dish by another
occurs (see section 9). Shadowing is a problem because you can only, make a proper correction for the field
center. The effect of shadowing is aways more on one side of the field than the other. A correction for the
field center is a good approximation for a point source (e.g. a caibrator) but no use for an extended field.
Many people simply del ete shadowed data.

The dynamic range of the telescope is determined by the general sidelobe level caused by those effects —
atmospheric fluctuations and instrumental instabilities— which cannot be calculated exactly. A wesk source
can only be determined if it is well above the random noise level on the map and the general sidelobe
interference due to strong sources in the field. High dynamic range mapping can be achieved using specia
reduction techniques (e.g. Noordam and de Bruyn, 1982).

The term ‘confusion’ is usually employed in radio astronomy to refer to the fact that every observed field
contains alarge number of wesk sources. These cause deflections that merge to a noise-like distribution over
the map. For normal observations with the Westerbork telescope at 1415 MHz (or higher frequencies) this
‘confusion noise’ is below the sensitivity limit and has no influence on the interpretation of the synthesis
maps. At 608 MHz, however, the greater flux density of most sources and the larger size of the synthesized
beam combineto rai se the confusion noiseto alevel greater than the sensitivity limit. The*confusion’ problem
here isto decide how many deflections on a map can be interpreted as due to individua (point) sources rather
than to a blend of many weaker sources. An often stated rule of thumb is to accept the largest deflections as
individual sources but not to count more sources than what corresponds to an average of one source per 20-30
beam widths. The situationis even more complicated when the beam is accompanied by a prominent sidel obe
pattern such as a set of grating rings. The statistica theory of the confusion and the influence of the detailed
shape of the reception pattern have been discussed by Burns(1972). To reduce the problem of confusion more
spacings should be measured to fill the u, v-plane better.
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PART 11

e oS e ene CHAPTER 6

THE COORDINATE SYSTEM

Ed. O.M. Kolkman based on text by W.N. Brouw (1972) and A.R. Thompson et al. (1986)

After Fourier transforming a set of visibilitieswe obtain a brightness distribution. We now discussthereation
between the severa coordinate systems used for Westerbork data.

6.1 wu,v AND [, m COORDINATES NORTH POLE

In this section we will introduce the (u, v) and ({, m) coordinate systems.
The following discussion is only valid for east-west arrays.
The equatorial coordinate system (x, y, z) is defined by the unit vectors:

& which pointsin thedirection § = 0°, h = 0", h—?}C
& which pointsin thedirection§ = 0°, h = —6" and -
&, which pointsin thedirection § = 90°.

8 and h are the declination and hour angle respectively. In thiscoordinate system
the baseline vector D, pointing from east to west with length D, can be written

EAST

D, 0 WEST e—)
Dy = Dy -1 (6.2)
D, 0

If we point to a source in the direction («o, é0) (and associated hour angle hg) then the direction vector s is

given by
Se C0S bp COS hg
sy | = | —ocoségsinhg (6.2)
S, sin bo

The geometrica delay D, - s can thus be written as 1D, coség Sin hg.
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The astrometric coordinate system is used for describing a tracking interferometer. The unit vectors of this
orthogonal coordinate system are:

source

&, which pointsfrom west to east as seen from the source,
&, which pointsfrom south to north as seen from the source and
&, which pointsfrom the source to the observer.

Let usfirst define D, = u, D, = v and D,, = Dy - & (=the delay). Then the
following transformation rules apply:

u sinh cosh 0 Dy
v | = | —sinécosh snésnh  cosé D,
w cosécosh —cosésinh  sind D,

From the above and eg. 6.1 we can immediately see that:

u = —D,c0Shg (63)
v = —D,Snhgsinég (6.4) SOUTH

When working with data from east-west interferometers it is common to define the coordinates { and m to
describe the sky brightness distribution.
=( ! (65)
g = m .

Theoriginof the(/, m) coordinatesystemisthefield center 5o = («, 60). Below wewill establishtherelation
between the ({, m) coordinates and the sky coordinates §(«, ).

RELATION BETWEEN («, 4) AND (, m)

Let usrewriteequation 2.1 in termsof (u, v) and ({, m) coordinates:

/'Sﬂ S

V(D) / B'(0)e™1#Pr74Q = q)/

WEST

V(u,v) = //B/(l’m)e—ﬂn(ul-pvm)dldm 66) A

Now consider the phaseterm ¢ = 2x(ul + vm) inthe equation above. This phaseterm can be rewritten using
the components of D, (equation 6.3 and 6.4):

¢ = —2nDx({coshg+ msiné, sinhg) (6.7)

Remember that for a delay tracking array this phase term is exactly the difference between the path length
difference between two telescopes pointing at s and the path length difference between two tel escopes point-
ing a s. i.ee AP = 2x(D, -s— Dy - ). The path length difference with respect to the direction
(ar, 8) equals 27Dy cosé sin(hg — o + o) While the path length difference in the direction («o, 69) equals
27 D), coség Sin(hg), and hence we can a so writethe phase term ¢ in the following way:

¢ = 27D, (c0osé sin(hg — o + avg) — COS g SiNhg) (6.8)
From equation 6.7 and 6.8 we obtain the following rel ations between («, §) and (I, m):

[ = —cosésin(a — ag) (6.9)
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C0Sé COS(or — )

= tandg —
m cotanoo stn(éo)

(6.10)

The projection from («, ) to ({, m) iscalled the North Celestial Pole projection.

6.2 THE DIFFERENCE BETWEEN 3D AND E-W COORDINATES

It isimportant to note that the («, v) coordinate system considered aboveis positioned in a planewith the pole
as reference. Thisis an important simplification which can be made for E-W arrays. For 3D arrays one uses
(u',v', w'") coordinates. In the corresponding image coordinate system the point spread function of the beam
isnot constant while for our NCP coordinate system the PSF is constant over the field.

For more details see Thompson et al.(1986) section 4.2 and 4.3!

6.3 REFERENCES

Brouw, W.N. (1971): Ph.D. Thesis, University of Leiden.

Thompson, A.R., Moran, JM. and Swenson Jr., G.W. (1986): “Interferometry and Synthesis in Radio
Astronomy” . John Wiley & Sons, New York.. 1SBN 0-471-80614-5. (See also review in part |l
Chapter 9.1, book 3).

INote the notation in this document differs from the primed notation in this book
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PART 11

o E S, CHAPTER7

TEMPERATURE, BRIGHTNESS AND
SENSITIVITY

by O.M. Kolkman based on text from the books mentioned in section 9.1 and text from the old manual ed. by
A.G. Willis

Note: We only discuss the theory here. For the calculation of sensitivity for the WSRT we refer to part 111,
chapter 2.

7.1 ANTENNA TEMPERATURE

In radio astronomy the concept of temperature is an important one. This has historical and practical reasons
we will not get into here. The main assumption is that the characteristics of the signals involved are that of
thermal noisefrom e.g. aresistor at atemperature7,.. The bandwidth limited noise power from such aresistor
can be expressed interms of itstemperature using the Nyquist relation:

W, = kT,Av (7.1)

where W isthe power, £ isBoltzmann's constant, Av isthe bandwidth inwhich the power is emitted, and 7,
isatemperature.

Using the Nyquist relation we can assign a temperature to the power measured by aradio antenna. Let us
consider an antenna measuring a power per frequency interval W4 /Av = wa. (w4 isdso called the spectra
power.) Now the antenna temperature can be written as T4 = wa/k. The antennatemperature is not only
related to the physical temperature of the antenna but also to the temperature of the objects emitting radiation
which heats the antenna.  Details of these relations can be found in the standard text books discussed in
section 9.1.

We define the effective aperture, A,, of an antenna as a fraction, 7,, of the geometrica cross-sectiona area
i.e. the collecting area, Ar . The power per frequency interval received from a non-polarized source with
brightness B(¢, ¢) observed using an antennawith a effective aperture A. and a (normalized) antenna pattern
An (0, ¢) (seefigure 7.1) can bewritten as:

47
A,
we =4 [ BO.0)Ax (0,610 (7.2
0

where the factor M depends on the type of receiver and the dipole combination used. (M = 2 in the case
we are only sensitive for one dipole direction, thus half of the power received on the aperture is actually
mesasured.)
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Brightness
B(6,
Distribution ( (p)AN(OO)z

Antenna Pattern Main lobe

AN |

Effective Aperture
Ae

=0

Figure 7.1: Diagram indicating the geometry of the
antenna beam

From the equation above and the Nyquist relation we find that

47

KTy = %/B(G,@AN(H,(;&)dQ (7.3)
0

On the other hand we know that the flux density Sy of a source with brightnessdistribution B(#, ¢), observed
by the same antennais given by:
47
So= [ B(0.6)Ax(6.6)d0 (74)
0

So, the flux density, has units of Wattsm=2Hz~* or 10?6Jansky.
From equation 7.4 and 7.3 wefind that:

kT,

So= M2 = M5, (7.5)

Ae
where S,,, = kT4 /A. iscalled the matched flux density.
Example: Consider asingle 25 meter dish, measuring continuum radiation at 92 cm. At this wavelength the
aperture efficiency 1, = 0.5 s0 the effective aperture A, =~ 12.5m. With a typica antenna temperature of
T, = 180K wefind S, ~ 2 x 10~2Wattsm~?Hz~! = 2 x 10*Jansky

7.2 BRIGHTNESS TEMPERATURE

The brightness temperature is related to the power emitted by a source. Assuming that the source radiates as
ablackbody we can use the long wavel ength approximation of the Planck |aw, the Rayleigh—Jeans Law:

B(0,¢) = —z (7.6)
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Note that the brightness temperature does not need to be equal to the physical temperature of the source. The
relation between source temperature and brightness temperature depends on the emission mechanism. For
further details we again refer to the standard text books discussed in section 9.1.

7.3 RELATIONS BETWEEN FLUX DENSITY, BRIGHTNESS AND TEMPERATURES

From equations 7.3 and 7.6 we find a relation between the antenna temperature, 74, and the brightness
temperature, 73:

2kT; 9
ery = / 2110.9) 1,0, 6)d0 (7.7
The rel ation between the matched flux density and the brightnesstemperature given by:
S = / 2TN0.0) 4, (6,100 (7.8)

In practice one assumes B(¢, ¢) (and equivalently T3 (6, ¢)) to be constant over an arealarger than the area of
the main |obe, in other words one assumes an extended source. Inthat case B(6, ¢) (or T3(8, ¢)) can betaken
outsidetheintegral and equations 7.7 and 7.8 reduceto

A 2kT, Al 2kT
Kla= 57 Azb / An(6,0)dQ = <= AszA (7.9)
main lobe
and 1 2kT; 1 2kT;
S = MTh / An(0,6)dQ = MTbQA (7.10)

main lobe
respectively. Theintegral [ ., . An(0,$)dQ = Q4 iscaled the beam area. To make a proper estimate
of the surface brightness or brightness temperature one ought to know Q4 We will come back to this issue
bel ow.
In the case one is measuring a point source of brightness B or corresponding 73, positioned at coordinates
(0,4) = (0,0) i.e. thebeam center, the flux and temperaturerelationsin equations 7.7 and 7.8 trivially reduce

to

A, 2kT,
kT, = —
M )2
and 1 2kT,
— - hh
Sm = v
respectively.

7.3.1 ESTIMATES OF Q4
The theoretical synthesized beam for auniformly and completely filled aperture with Gaussian grading is

A

QA = 0-5883625 6D)\ ,max D)\ ,max

where D) .. iSthelength of the maximum Baselinein meters and A isthe wavelength in meters.

In practice it is most straightforward to actually measure Q4 by integrating the synthesized beam. If one
workswith CLEANed maps one must of course integrate over the restoring beam used by CLEAN to get Q 4.
Asthisusualy is a two-dimensional Gaussian beam one can evaluate Q 4 analytically.
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For arestoring beam:
An(Q) = Ax(Lm) =€ “W) +(82) ] " (7.11)

wherel, m are sky coordinatesand b;,b,,, arethehaf power beamwidthsin radians. Integrating over thisbeam
yields:

[CSINeS) (a2, (a2
Q4= /AN(Q)dQ = / / e [<bl) +(8) ] " dldm = ﬁblbm = 1.13b;by, (7.12)

Q —00 —00

7.3.2 CONVERSION FACTOR T3(K)=S(MJY)
Remember the relation between observed flux .S and source brightnesstemperature, 73

2k

2kT,
S = 32 =

/ An(0,6)dQ = =5"Qa (7.13)

main lobe

Using the estimates for Q4 found above we can find the conversion factor between the flux density and
brightness temperature
Using

A
Q,=0. 2—
4 058836 Sn(SDA,max D)\,max

where D) 4. 1S the maximum baseline sampled and M = 1 (i.e. both dipolesused), we find

Tb(K) _ Di,ma@'s‘né (7 14)
S(mly) ~ 1.62x 10° '

Note that the relation above does not depend on wavelength and isvalid for line and continuum observations.
For an 2.75 km baselinewe find 7'(K) = 4.68sinéS(mdy).
In the case of atwo dimensional Gaussian (restoring) beam we find with A/ = 1

2k =«

SW) = 32232

biby Ty (K) (7.15)
Or rewritten with .S in mJy, HPBW b, and b, in arcsec and substituting A\v = ¢ = 2.997 x 10°m/s and
k = 1.380662 x 10~23J/K

1.2221261 x 1022
Ty(K) = V2b, b
Ty

S(mdy) (7.16)
And for the 21 cm wavel ength region we find
T,(K)  605.7383 (@)2

S(mdy) boby
where vy = 1420.405MHz, the rest frequency of the 21 cm emission line.

(7.17)

v

7.4 SENSITIVITY

Note: only the theory is discussed here. For the calculation of sensitivity for the WSRT we refer to part 111, chapter 2.

The sensitivity of aradio telescope is usualy discussed in terms that suggest that all sources of error in the
measurement are caused by random fluctuations with the well-defined statistical properties of thermal noise.

This assumptionisvalid only for ideal observing conditions— no interference, no scintilation and compl ete
stable equipment. The sensitivity is a measure of the weakest source which, in the absence of confusing
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sources, can be detected with confidence. It is often defined as the signal corresponding to the rms error
detection, o or as some multiple (usualy between 2 and 5) of this number. If, for example, one wishes to
determinewhether aparticul ar optical object isaradio source, then apositivedetection of &~ 20 at that position
may be considered significant. The probability of a 20 positive detection occurring at any specified position
is only about 1/44. If on the other hand one wants to discover previously unknown sources over a whole
Westerbork field then this factor of 2 isnot sufficient: the field of view is4 x 10* larger than the synthesized
beam and one expects more than 800 positive detections of 20 or larger to occur there purdly by change even
if theentirefield is devoid of sources. The same level of confidence (1/44), in thiscase, can only be achieved
by accepting detectionswhich are 4.6 or larger. The sensitivity for thissecond programistherefore 2.3 times
worse when the same map with the same rms error is used for both programs.

To calculate the sensitivity one needs to eval uate the noise fluctuationsin theimage how thisis doneis shown
bel ow.

Let usassign a system temperature 7;; corresponding to the noise power of the receiver itself and al the other
sources of unwanted noise.! The power of this system noiseismuch larger than the power inthe cosmic signal.
Ther.m.s. fluctuationsin the system noise power in terms of temperature, A7 integrated in a bandwidth Av
for atimet are proportional to (Avt)~*? and can be expressed in units of system temperature, 7, by

CT;

AT = 7.18
vV Avt ( )
where C' is a factor that depends on the particular type of receiver (C' = /2 for the Westerbork correlation
receiver.)
Using equation 7.5 we can find ther.m.s. error, o, in our determination of the matched flux density.
k CTs
¢ (7.19)

O'(Sm) == A_e\/m

In the case of an aperture synthesistel escope additional correction factorscome in but therelationfor ther.m.s.
error in the matched flux density ¢(.S,,) is essentially the same as above. When the number of telescopes
increases the noise in the system will decrease by 1/+/N; and because a correlator may introduce some noise
adegradation factor 1) comesin, 7, isafactor that arises from the fact that not &l of the V; telescopes have
equal weight.

Dk CT;
= ———— ——
nngI Ae \/AI/t

We now introduce the polarization summation factor, P;. It isequa to one over the squareroot of the number
of polarization channels Ny, P, = 1/+/Np.? Using thisfactor we can extract ageneral formulafor ther.m.s.
fluctuations, AS, in the measured flux, S.

(7.20)

M D ko T2
VNp gV N 2naAr /At

where the effective aperture, A. can be rewritten in terms of the geometrical cross-sectional area, Ay, of an
individual tel escope aperture and the antenna efficiency 7,

AS = MP,o = (7.21)

Ae — 277(1AT

The other relevant terms in equation 7.20 are:

1In general the noise power from the receiver system is the largest. However, strong sources in the field can contain a lot of noise;
especially at meter wavelengths (at which WSRT is going to observein the future) the galaxy containsa lot of noise
2In Westerbork Np = 1 if we measurein XX or YY dipole setting, Np = 2 if we measure XX and Y'Y dipole setting
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D =adegradation factor introduced by the digital correlation process used at Westerbork which
rai ses the noise above that of a pure anal ogue correlation device.

n, =a grading efficiency factor arising from the fact that unequal weights are generaly given
to different interferometer pairs by the grading function applied to the data before Fourier
transformation, n, ~ 0.9.

T, =the system temperature. For an interferometer pair, the system temperature is given by

Ts = \/(TF +Ta) (T +Ta)

where T and T}y are the noise of the fixed tel escope and the movable telescope and 7'4
is the antenna temperature due to the noises in the field. 74 isclosely similar for al fixed
and movable tel escopes.
Nr=thenumber of interferometers. For a N -element interferometer thisnumber has amaximum
of N(N —1)/2
Av=noise equivalent bandwidth of the observation. In the case of a continuum observation
this value is approximately equal to the total bandwidth B of the observation. For line
observations we are usually more interested in the noise per frequency channd. (Av =
B/Np forauniformand Av = 2.67B/Nr for aHanning taper respectively, where N is
the number of frequency channels.)
Usually we want to know the total flux density, S and its associated error, AS. They can be calculated from
the matched flux density, .S,,, and its error, ¢, by substituting the instrumental parameter, A/, which is now
dependent on the rel ative position of the dipoles, and considering how the error changesif we add channelsto
obtain total flux.
Two examples:

ExaMPLE 1 We measure only one polarization channel (Np = 1) and with parallel dipole pairsin the two
antenna el ements comprising an interferometer. The source flux density, .S, then equals twice the matched
flux density, Sas (so M = 2).

The observed flux in one polarization channel (say XX) Sy = %S =+ ¢. Normalization for channel flux gives
aresponse S + 20 Thusther.m.s. error in the measured flux density is:

D ko T2
AS = 20 =
MgV NI UaAT \/AI/t

where we have substituted A/ = 2and Np = 1ineguation 7.21.

ExAMPLE 2 We measure in 2 channels and paralld dipoles (M = 2). The tota unpolarized source flux
density equals .S. Observed flux density in the (XX) channel = %S + oxx,inthe (YY) channel the observed
flux density equals 15 + oyy
Averaging these signals we obtain the measured flux density .S’ where

1

§' = 5 ((S % 20xx) + (5 & 20vy))

or, when adding the noise quadraticaly (y/40% . + 402y = 2V/202 = 20/2)

S/IS:EO'\/Z aSSlJmingUXXIO'nyO'
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e oS e ene CHAPTER 8

EFFECTS IN FOURIER TRANSFORMED
SPECTRA

by A.G. Willisand J.D. Bregman

8.1 INTRODUCTION

At Westerbork, visibility spectra are made by complex Fourier transformation of a time cross—correlation
function into the spectral frequency domain.! Here we discuss some instrumental effects which influence
spectra obtained by this procedure. The discussion is basically oriented toward practical interpretation of
results obtained with the digital Fourier transform procedure used at Westerbork and is not meant as a
theoretical introduction to the subject of power spectrum analysis. For more detailed discussion of digita
Fourier transform and spectral analysis techniques the reader may wish to consult the reference list at the end
of thischapter. A short summary of general Fourier transform relationsis given in chapter 4.

Wefirst define even and odd functions. f.(¢) isan even functionif f.(—t) = f.(¢). The Fourier transform of
an even function is an even function and isreal. f,(¢) isan odd function if f,(—t) = —f,(¢). The Fourier
transform of an odd function is an odd function and it is imaginary. We note that an arbitrary function can
always be decomposed into a sum of an even and an odd function.

We measure areal cross-correlation function in the time domain in Westerbork. Thus since the function can
be split up in the sum of even and odd functions, the Fourier Transform in the spectral domain will always be
composed of area part which iseven and an imaginary part that isodd. This property affects especialy the
shape of the spectrum obtai ned when the phase across the frequency band is not zero (see below).

Before we sample the time cross-correl ation function the radio signals are mixed down to video frequencies
covering therange v = O to v = B where B is the bandwidth of the observation. Increasing frequency
channel number in an observed spectrum always corresponds to increasing video frequency but increasing
video frequency may not correspond to increasing radio frequency as different mixing schemes are used for
the variousradio frequencies available at Westerbork.? The main part of this section givesthe explicit relation
between channel number and increasing or decreasing radio frequency.

The actual video bandpass is given in the schematic diagram in figure 8.1. At thelow frequency side thereis
asteep filter with 3kHz FWHM. At the high frequency side the spectrum is smoothly filtered to gradually fall
to zero at frequency B. Thelast ~ 7% of the band has a normalized response of less then 0.5.

10n page 2-6 we mentioned the relevant transformation in equation 2.11
2For the DCB you can get the lowest frequency at the center
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Figure 8.1: The bandpass

The video frequency is zero at all frequencies greater than B. The sampling theorem of Fourier analysis states
that since f(v) is zero for all frequencies greater than B, then its Fourier transform, the cross-correlation
function h(t) can be uniquely determined by discretely sampling at intervals At = 5% (Discrete sampling is
obviously necessary for the performance of adigital Fourier Transform.)

At Westerbork the maximum bandwidth is 10 MHz, so the maximum sampling rate needed is At = 50
nanoseconds. If we sample the time cross—correlation function at a rate slower than 1/2B then we will
introduce significant aliasing into the video spectrum that we calculate from the sampled cross—correlation
function. We can see this effect from the schematic diagram (figure 8.2)

Referring to figure 8.2 we note that sampling the cross—correlation function at timeintervals separated by Ar
can be considered the same as multiplying the continuous correlation function by a sequence of § functions
(or 111—function, pronounce as Shah-function) separated by Ar.

We can Fourier transform the continuous function to yield the continuous frequency spectrum. Note that
formally we must calculate values in the negative frequency domain athough these are not "physically"”
meaningful. The Fourier transform of the time domain I11-functionis a frequency domain I11-function whose
s-functions are separated by ﬁ = 2B. Using the property that the Fourier transform of afunction equal to
two functions multiplied together (i.e. the sampled cross—correlation function) is equal to the convolution
of the fourier transform of the two individua functions, we see that the Fourier transform of the sampled
cross—correlation function is equa not to asingle frequency, but a multiplicity of frequency spectra separated
by 2B in the frequency domain. Since the video frequency and its negative frequency image have a length
of just 2B we can see that we have avoided overlap of the positive frequency spectrum and its adjacent
negative counterpart. I1f however we made the sampling timeinterval, Ar, longer we see that the I11—function
infrequency space would haveitsé functionscloser together and thusthe adjacent spectraforming the Fourier
transform of the sampled cross—correl ation function would begin to overlap and distort each other. Thisisthe
meaning of aiasing. (figure 8.3)

To reduce the diasing effects, the Westerbork bandpass response is filtered so as to drop smoothly to zero at
the maximum frequency B (see figure 8.1). We refer the reader to the book by Brigham (1974) for further
details about diasing.

Our next difficulty arises from the fact that the Fourier transform rel ation states that the frequency spectrumis
related to the time cross-correl ation by

oQ

fv) = / h(t)el?™ dt (8.1)
i.e. wereally needtosampleh(t) out totimelagsof +oo beforewecan properly determine f(v). Unfortunately,
we are impatient scientistswho do not wish to wait until the end of the universe before we determinethe form
of the spectrum f(v). Thusin practice we only sample the cross—correlation function over some time range
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Figure 8.5: Thesinz/« function

—T" to +T" before Fourier transforming the data. Our sampling of the cross—correlation function over only a
limited time range can be considered the same as multiplying the cross-correl ation out to infinitetime lag by a
window function (or taper) whose valueisunity over thetimerange —7" to /" and whose valueis zero beyond
these bounds. Thistaper (which isthe same as no taper) iswhat we mean by auniformtaper. Thediagramin
figure 8.4 illustrates this process in a schematic way.

Now remember that the Fourier transform of a function which is the product of two functions equals the
convolution of the Fourier transform of the two individual functions. The Fourier transform of the uniform
taper window isasinz/« function. Thus the spectrum we observe will equal the true spectrum (the Fourier
transform of the proper cross—correlation function) convolved withasinz /= function.

We set the maximum value, 7', out to which we sample the time cross—correlation function equal to NpAr
where Ny isthe number of frequency channelsinto which we wish to split up the frequency spectrum (which
ranges from video frequencies 0 to B) and Ar(= 1/2B) isthe sampling rate of the cross-correl ation function.
Thus the total number of samples of the cross-correlation function that we need is 2N since we actualy
sampl e the cross—correlation function from —7" to 47, or over thetimerange 2NpAr.

The Fourier transform of awindow function of value unity over therange — Nz /2B to + Ng /2B and of value
zero beyond these boundsis given (after normalization) by

. 27 Npv . TV
) T
flv)= 2rNpv - T (82)
2B b

whereb = B/Np isthe sampling interval in frequency space.

Looking at thesinz/« functionin figure 8.5 we can see why we made 7', the maximum time out to which we
measure thecross—correlaionfunction, equal to Ny /2B . Theresultingsin 2/« functiongiven by equation 8.2
happens to have itsnull points, except for the central peak at frequency 0, lying exactly upon the multiples of
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b, where b isthe sampling interval in the frequency spectrum.
Because the observed spectrum will be the true spectrum convolved by the function given in equation 8.2,
the observed spectral response at frequency v to a true monochromatic frequency source of strength unity
situated at frequency v, isgiven by:

sin 71'(1/0b— vs)

S(VO) = m(vo—vs
b

(8.3
Whichisjust equation 8.2 except for ashift of theorigintofrequency v,. Wethen seethat if themonochromatic
source happensto lieat frequency v, whichisa precise multipleof &, the frequency sampling interval, then the
observed spectrum will show alineonly at frequency v and nothing elsewhere, since all the other sampling
locationslie on nullsof thesinz/« function.

We can extend this concept to show that if we have any number of monochromatic spectral lines, each of
which isprecisely located at a multiple of b, than the observed spectrum will still only show lines at precisely
those locations and zeros at the other sampling locations.

Unfortunately most spectral linesare neither monochromatic nor do they occur at frequencieswhich are precise
multiples of b. Because of the side-lobe characteristics of the sinz/« frequency function we will measure
non-zero frequency components at all discrete frequency sampling locationsin the spectrum.

In the sample shown in figure 8.6 we show atrue monochromeatic line with phase 0° (remember we measure
a complex frequency spectrum) at a frequency v which lies precisely between two sampling locations. The
arrows show the magnitude and phase(0° for positive directions, 180° for the negative directions) which we
would measure for this line at different frequency sampling locations (remember that we must add in the
response due to the "image’ line in the negative frequency space). We could then use a fitting program to
find the true position and strength of the line. However significant positive or negative amplitude responses
are still measured at every frequency sampling location outside the main lobe of the sinz /2 function. This
undesirable situationis called leakage; ways to reduce its effects are discussed bel ow.

The full width half maximum (FWHM) of the sina /2 function given by equation 8.2 equals 1.2b. This gives
the effective frequency resolution of the observation (i.e. two spectral lines whose frequencies are separated
by less than 1.26 will not be distinguishable as true separate lines). However, due to the significant near—in
negative sidel obes, the noise equivaent bandwidth of asingle frequency channel equalsb.

We close this section by pointing out that the Fourier transformed spectral pointssituated at video frequency
0 can, obviously, have no phase information since its frequency is 0. The real amplitude of this spectral
point is equal to the area under the cross—correlation function as will be apparent from equation 8.1. Since
the dataiin thisfrequency channel (which is aways frequency channel 0) is not astronomical useful, after the
Fourier transform has been made the datain this channel are replaced by an average of the datain all the other
frequency channels. This channel containing averaged datais then misleadingly referred to as the continuum
channel
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8.2 PHASE EFFECTS

Now consider what happens when we want to accurately calibrate a spectral line observation. To calibrate
such an observation we separately observe a continuum point source whose spectral flux density, a, we assume
to be perfectly constant across the total bandwidth, B, of the receiver. We can then use the observed response
of the frequency sampling channels to calibrate the gain and phase corrections needed for each frequency
channdl.

At Westerbork we can apply an on-ine phase zero correction to the data However we will assume that the
phase zero correction has not been perfect and that the visibility function of a continuum point source located
precisaly at the fringe stopping center still exhibits aresidual phase ¢ on a particular baseline. 1 is assumed
to be constant across the bandwidth B.

To begin with, we will assume that the video bandpass has an idedlized square shape; i.e. the response drops
steeply to zero at frequency B. At frequencieslessthen B theresponseisassumed to be of constant amplitude.
Thusin thisidealized trestment we will initially ignore the actual amplitudetapering at the edges of the bands
asshown infigure 8.1

Including the negative (and Hermitian) frequency responses, the spectrum of the continuum point source is
then given by

aelV for O<v < B
—Jjy —
fv) = ae for — B> vr<0 (8.4)

acosy forv=20
0 for |v| > B

The cross-correlation function F'(¢) of thisfunction is given by

oQ

/ f(l/)e_jzm’tdy

F(t)

0 B
/ ae" VeIV, 4 / aelV eIy
°B 0

Remembering that an integral of the form

Y
R() = /aejwe_jzm’tdy
Y
= aejw/(COSZﬂ'I/t—jSiHZﬂ'I/t)dI/
)

sin27 Bt iny 1— cos2r Bt
27 Bt 27 Bt

Y . cos2wut

2wt

— gV sn2xvt
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xr

We can integrate the expression for F(¢) to give

F(t) =2aB [0031/; (8.5)

We can see that F'(t) contains a term 1225% associated with the cosine of the phase and a term 2=5282rbt
associated with the sine of the phase which isan odd function.

We now consider what would happen if the phase were exactly zero (vv = 0), i.e. we have acompleterea and
even signal of amplitude« in frequency space. Then the cross—correlation function would just be proportional
to our friend the sinz/« function which here has the form %. Now remember that we sample the

cross-correlation function, F(¢), at time increments of Ar = 1/2B. We then see that excepting timet = 0,
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Figure 8.7: The 1=2Z function

we sampl e this cross—correlation function at precisely itsnull points. We only have measured response at 2a B
at time¢ = 0 and zero elsewhere. Thisisjustaé, or impulse, function.

We remark that in the case of discrete sampling, it is now necessary to multiply the impul se response by %
to obtain an impulse signa, a, which correctly represents the true area of the continuous sina: /2 functionin
the time domain. In the case of the continuoustransform thisis not necessary.

Since the measured cross—correlation function is zero except at ¢ = 0, we can see that it is unimportant in
this case that we stop measuring F'(¢) at amaximum time 7" = JZV—E; because the concept of a window (taper)
function has become meaningless.

Thefourier transform of the 6 of areaa at t = 0isafunction of constant amplitude a out to oo in frequency
space, so we have effectively recovered the function given by equation 8.4 which just has constant amplitude
a over therange — B to B wheny: = 0

The effects on the sine component of the signal, —a siny for v lessthen 0 and a sint for v larger then zero,
which is an odd function, are more difficult to calculate. When sin is non—zero, the time cross—correlation
function contains a contribution from the term 1=82215¢ whijch is also an odd function. Since the time
samplingincrement isAr = & we only measure 2=525215¢ to have val ues of zero at every other sample point
(see figure 8.7). At the sample pointsin between we measure 2=23225¢ negr or at absolute maximum. Thus
itis clear that in this case when we measure 1=852t5¢ only out to limits of 5% we realy have implicitly
multiplied the function as it stretches out to +oo by the uniform taper window function with value unity
between thetime limits + sz—g and va ue zero beyond these bounds.

Thus, whenwetransformthefunction =525t as measured between thelimits =22 to J£ back tofrequency
space we obtain our sine component of the 2B frequency signal but it is now convolved with the transform of
the window(taper) function. This transform was given by equation 8.2.

It isclear from equation 8.4 that the sine component of the signal has a discontinuousjump from —a siny to
+asiny a video frequency 0. Thus our observed spectrum of the sine component of the signa will be the
convolution of this sharp rectangular edge with the sin 2/« function given by equation 8.2.

To derivetheresulting observed spectrum we shall neglect thefact that thevalue of |a sin+| aso jumpssharply
tozeroa |v| = B and assumethat |a sin#| is constant out to vaues of v = +oco.

Wejustify thisassumption by pointing out that the upper ~ 10% of the actual video bandpass used at Westerbork
istapered to smoothly fall of to zero response at frequency B. Thus any effects in the observed spectrum due
to convolution of the sinz /2 function with this smoothly tapered edge are negligiblein comparison with the
effects due to the convol ution with the sharp edge assumed at frequency 0.

Because of this convolution, the observed sine component of the signal will exhibit a ripple pattern which is
most dominant at frequencies close to the O frequency and which dies away as we move toward higher video
frequencies. For the continuous Fourier transform, the observed sine signal is given as afunction of increased
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observed frequency o, where vy > 0, (since wefinaly are interested only in the positive frequencies) by

i TV
Sin -

vo
Fsine(vo) = asim/;/ ——dv
B
0

= asim/;g/ Smxda:
™ X
0
if we change the variable of integration from v to z, and z = *°. We do the discrete Fourier transform, we
samplethefrequenciesat discreteintervalsof nb wheren = 1,2, 3, ...andthusz = 0, w, 2, .... Values of the
function/ L Si(z) are tabulated by Abramowitz and Stengun (1965) in their chapter 5. The shape
0

X
of the amplitude ripple is shown in detail in figures 8.8 and 8.9. We see that we will measure an f;;, (v0)
which can deviate from the value a sin+ by up to 18% (at the sample frequency point b).
Since the observed sine function has an amplitude ripple so will the observed phase as the observed phase is

given by arctan ( observed Snjunction ) . The measured amplitude clearly exhibitsaripple since it just equals

observed cosfunction

V/Sin? 4 cos?.

The magnitude of the observed ripplesin amplitude and phase is clearly dependent on the phase ¢ across the
bandpass since only the term proportiona to sin+ is affected by the convolution at a sharp edge.

In the above discussion we have neglected the actua filtering of the video bandpass on thelow frequency side
by thefilter with awidth of 3kHz at the half power leve (figure8.1). In situationswerewe only observewith a
wide total bandwidth B and only afew frequency sampling points, 8 — the frequency sampling interval — is
much greater than 3 kHz. In such case the frequency channel centered on video frequency O missed afraction
=3 of its power where b is expressed in kHz. So we effectively have an absorption feature centered on zero
frequency much smaller than one channel width. Thusit is approximately a spectral point source which after
deconvolution gives a response, observed at frequency vy, of NTSS(I/()) which is given by equation 8.3 with
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vs = 0. Since v is a precise multiple of 6 we sample the S(xo) function at null points and no effect due to
the absorption is seen (e.g. with B = 10MHz and Ny = 32, b = 312.5kHz> 3kHz). Thusfor b > 3kHz
the approximation used for the above calculation, that the video bandpass has uniform response compl etely
across the band, is acceptable.

However, for small bandwidth observations with alarge number of frequency channels, the 3kHz interval can
be of the same order or greater than b (e.g. for galactic observationsit is popular to select combinations of B
and Np such that b = 2.44kHz). In such case the 3 kHz dip can extend over afew channels.

The amplitude of theripplein theterm proportional to sint will decrease because thetransition from negative
to positive signal is no longer sharply discontinuousat » = 0 but smoother. However the cosine component
will now drop downto zero at v = 0, i.e. we see an absorption wedge at frequency 0.

We will now see aripple pattern in the term proportional to cos«; because of the convolution of this missing
wedge with the sinz /2 function given by equation 8.2.

However the amplitude and shape of the ripple pattern in the cos function will be different to the amplitude
and shape of theripplein thesin function because in thefirst case thesina/« function is convolved with an
absorption wedge while in the second case the convolutionis with aramp. Thustherewill still be aripplein
amplitude and phase whose exact shape is dependent on the rel ative contributionsfrom the convolved cosine
and sine functionsi.e. on the original phase + in the band.

Thus uniform (or no) taper observations should be approached with caution. The phase ¢ of an observation
can easily be different to the phase 1. of its calibrator because of additional extended structure , sources
away from the field center, etc. Thus the observed amplitude and phase ripple of the frequency spectrum of
an observation may be different to the observed amplitude and phase ripple of the calibrator. Consequently
the observation will end up being improperly calibrated. However as we can see from figure 8.9, the ripple
will have an amplitude of more than 2 percent in only the first twenty low numbered channels. Thusif we
make aline observation with > 64 frequency channels and the line we are interested inis located in only the
central part of the band, then the uniform taper option is still a viable observing procedure if the line signal
per frequency channel is considerably greater than 25% of the continuum signal.

8.3 TAPERING

The undesirable amplitude and phase ripples discussed above are caused by the measurement of the time
cross—correlation function only out to some maximum time lags +7". When we only use uniform taper (= no
taper, see above) we have sharp discontinuitiesin the cross—correlation function at time lags £7°

It are these discontinuitieswith their associated sin « /2 transforms which produce the undesirable amplitude
and phase ripplesin the frequency spectra

We can reduce the effect of the discontinuities by giving the outer parts of the measured cross—correlation
function reduced weight. (Remember that with uniform taper the weight can be considered unity everywhere

Version: 1.0.0 August 17, 1993



WSRT User Documentation, Part 11 section 8.5.0 page (11)-8-10

over the measured time lag and zero beyond the measured interval). At Westerbork we presently apply
this reduced weight by means of a window function or taper called Hanning (after van Hann, an Austrian
mathematician), which in the time domain hasthe form

1 Tt
- { Jerem s

This function goes smoothly to zero at time T.
The Fourier transform of thiswindow function in the frequency domain, or the observed spectral response at
frequency v to a monochromatic point source situated at frequency v, is given by

Flrvo—v) = %S(Vo —-v)+ %S(Vo —v+b)+ %S(Vo —v—1") (8.7)

where S is the Fourier transformed uniform taper spectral response to a spectral point source (equation 8.1).
vo — v isamultiple of the frequency sampling interval b.

F(vo — v) has afull width half maximum of 25. Thus 2b is the effective frequency resolution of a Hanning
tapered observation. However the near—in negative sidel obes of the Hanning convolving function are only
2% of the peak response, in contrast to the 21% negative sidelobes of the uniform taper sinz/«convolving
function. Thus the Hanning convolving function is broader than the sinz /2 convolving function but has
smaller negative sidelobes. Alsowe find that the amplitude and phase ripplein a Hanning tapered observation
isvery smal (lessthan ~ 2%).

8.4 DELAY EFFECTS

The time cross—correlation of a visibility function is obtained by correlation of two antenna signals of an
interferometer pair. Before the signals enter the cross-correl ator they are fringe—stopped and delay corrected.
The first correction eliminates the Doppler frequency difference between the two elements looking at a sky
source from the rotating earth. The delay correction eliminates the path difference of the plane wave incident
on the two elements of theinterferometer.

In 1980 3 adigital delay system was implemented which corrects the video frequency signal. The delay will
be accurate towithin~ 0.1ns ina10s integration period. Thus, with the proper fringe stopping for zero video
frequency, there will be negligible phase slope oscillation over the video frequency band.

Delay errors can occur however and that is why when we observe HI at velocities close O we have to do a
calibration observation below and above the frequency of interest. If the delays were perfect one calibrator
would be OK, but if you shift frequency you usually find that the phase-zero offsets shift noticeably (typically
5°/MHz)

8.5 FAST FOURIER TRANSFORM EFFECTS

The fast Fourier transform (FFT) agorithm requires that the total number of sample points of the cross-
correlation function and spectral frequency functions each be a discrete power of 2. This means that our
sampling of these functions can not be precisdly symmetric about the origins¢t = O or » = 0. The time
cross—correlation function is sampled at 2NV points separated by Ar = %. The Nth pointisnear ¢t = 0 and
the so called odd channel near t = — N é§7. Using the FFT the 2V points of the cross—correl ation function are

3Until 1980 the delay was corrected in steps of 10 m (33.3ns) at an intermediate frequency of 30 M H z in intervals of 2 minutes.
This causes the cross—correlation function to be time shifted by a maximum of about 20 ns. According to the shift theorem for Fourier
transforms (see section 4) this causes a phase slope over the band in the frequency domain. Through a change of the fringe stopping
frequency, thereis no phase changefor the center of the band. After correlation every datasampleis corrected for the average phase slope
acrossthe band during that integration period. Even with agood phase zero correction at the band center, this phase slope across the band
will produce, for uniform tapered observations, amplitude and phase ripplesin the frequency spectrasimilar to those discussed abovefor
aconstant phase offset. However, the difference between the phase at the edge of the band and the phase at the band center oscillatesin
amplitude (up to 90°: i.e. differencesupto £90° for a10 M H Z bandwidth) as the delay offsets change. Thusthe amplitude and phase
ripple effects due to the delay offsets are averaged out when a frequency spectrum is made from alarge number data samples taken with
different delay settings.
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Figure 8.10: FFT reationships

transformed into complex frequency pointsof which N — 1 are useful channels at video frequencies between
Oand B.

Remember that the data centered at video frequency has no phase and is not physically meaningful. The
situation is sketched out in figure 8.10 for 2V = 8, which would correspond to requesting a spectrum with
Np(= N), the number of frequency points, being equal to 4.

The N output frequency channels are given by thenumbers0,1,2,3, ..., Np — 1

Note that the Nz 4+ 1th sample point would have a contribution from the true spectrum and the adjacent aias
spectrum and thus does not contain meaningful data. This result does not affect frequency spectra measured
with a uniform taper, but in a Hanning tapered observation, the N rth point contains a 25% contribution from
the Ny + 1th point (see equation 8.7 and 8.8) and must be discarded. (the datain thispart of the spectrum has
very low signal anyway because of the bandpass taper, so deleting the N pth point we haven't lost useful data)

8.6 NOISE DISTRIBUTION IN TAPERED SPECTRA

As we can see from equation 8.7 use of the Hanning window function in the time domain corresponds to
smoothing a frequency spectra Fourier transformed from a uniform tapered time correl ation function with the
operation

1

1 1
Hi= Ui+ 5Ui+

where the U; are the signalsin the n + 1 frequency channels (having numbers 0 through ») of a frequency
spectrum produced from uniform tapered CCF data and where the H; arethe signasin then + 1 channels of
afreguency spectrum produced from Hanning tapered CCF data.

We now relate the noise in a Hanning tapered channel to the noise in a uniform tapered channdl. Here we
ignore the data in channels 0,1 and n of the Hanning tapered observation since they contain a contribution
from the video frequency 0 or the aliased spectrum (see above).

Thus, if we define the noise in a single uniform tapered channel to be o (assumed to be the same for al
channels) the noise in the Hanning tapered channel is

1 2 /1 \* /1 2
(Zo'i—l) + (éai) + (Zo'i+l)
i+}+i 2

16" 4"716)°

/6
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Taper

Uniform Hanning
channel spacing b= 2 b
FWHM (effective frequency resolution) 1.2 2
noi se equiva ent bandwidth per channel b (8/3)b
correlation between first 0 2/3
second 0 16
third 0 0

Average noise per channel as a result of

summing n adjacent channels

n= one o 7(3/8)2
two a/\/(2) o3 /(1+ 1)
three a/\/(3) c/(2+ 1)
four o/ 4 o /B+31)
eight o\/(8) o3\ /(T+3)

Table 8.1: A summary of uniform and Hanning taper
properties

Thus the noise equivalent bandwidth of a Hanning tapered channel= % = 2.67x that of an uniform tapered
channdl.

However the noise in adjacent Hanning channelsis strongly correlated, so that summation and averaging of
two adjacent Hanning tapered channels does not result in a+/2 decrease in the noise.

eg. If we add together two adjacent Hanning channels , say ¢ and ¢ + 1, then using the relations between
Hanning and uniform channels given by equation 8.8 we have

1

H v (averaged signa) = E(Hz’+Hi+l)
1/1 1 1 1 1 1
== =~ 7Ui— —Ujg — Uy _Uz' _Uz' _Uz'
2<4U 15U+ JUisa+ 20+ U+ 5 +2)
1 3 3 1
== _Ui— _Uz' _Uz' _Uz'
8 1+ 8 + 8 11+ 8 +2

Assuming the noise, o, to be the same in each of the uniform tapered channels, we find that

1 9 9 1
2 2 2 2
CAV \/ o+ o+ o+ o

64 64 64
= —\/82_00' = 0.560

Remembering that the noisein 1 Hanning channel was 0.61¢ we see that the addition of two adjacent channels
has resulted in a noise decreased by only a factor 8:—2‘13 = 0.92 instead of the factor iz = 0.71 expected for
two compl etely independent signals.

If we add together two Hanning channel s separated by 25, e.g. numbers: and i + 2, then by the same procedure
as outlined above we find that the decrease is0.82, so thereis still some correlation (Asisto be expected since
uniform taper channel ¢ + 1 contribut%‘—l1 signal to each of the Hanning channelsi and ¢ + 2.)

Properties of uniform and Hanning tapered spectral channels are summarized in table 8.1.
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8.7 OTHER TAPERS

As shown above sidelobes in the frequency domain can be suppressed by tapering of the cross-correlation
function in the time domain. This can be done by a number of tapering functions. These are discussed by
Harris (1978). Three taper functions can be used at Westerbork. They are all applied before the CCF isfourier
transformed. We already discussed the Uniform (no taper) and Hanning taper above. The Hamming taper is
similar to the Hanning taper but has a narrower frequency beam and lower side lobes. For the Hamming taper
the individual frequency channels are also correlated in a similar way as for the Hanning taper (see previous
section). The sidelobes of the Hamming taper do not decrease in amplitude as rapidly as those of the Hanning
taper so the correl ation involves more channelsthan only the adjacent, asis the case for the Hanning taper.
The differences between the Hanning and Hamming taper are indicated in the table below:

Beamwidth  Hihgest sidelobe
W(i) FWHM indb in %
Uniform 121 B/Np -65 224
Hanning | 0.5+ 0.5c092i7/N) 20B/Np -16.0 25
Hamming | 0.54+ 0.46cos(2iw/N) | 1.81B/Np -215 0.7

where:
W (i) isthe discrete form of the function in the time domain
i=-4,-Z+1...,-101,.. . F+1%

Np isthe number of frequency channels
B isthe bandwidth

In the frequency domain the Hamming taper can be represented by the following smoothing function (e.g.
Harris (1978)):
H; =0.23U;_1 + 0.54U; + 0.23U; 11 (8.9

In asimilar way as in the previous section it can be shown that the noise in a Hamming tapered channel is
equd to

orr = \/2(0.23)2 + (0.54)2 = 0.6303

thus the noise equivalent bandwidth will be 1/(0.63)% = 2.52b, where b isthe channel separation, B/Np.
The average noise as aresult of summing » adjacent channelswill be:

1
a%\/u 0.23%(0.23— 1)+ N = N\/N —0.708
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9.1 BOOK REVIEWS

This section contai nssome reviews of popular textbooks. The number of bookson the subject isvery largeand
can of course not al be mentioned. Theintentionisto givethereader an ideawhereto start when searching for
literature on a particular subject. One may expect that the books discussed can be found in every astronomical
library. All necessary information to order the book is cited.

1. Tools of Radio Astronomy K. Rohlfs

Springer Verlag, Berlin (1986)

ISBN: 3-540-16188-0/ 0-387-16188-0
This book, which ‘grew out of a one year graduate course’, covers alarge range of topics. The topics
are discussed briefly using a mathematical approach where possible.  Although the book is written
in a compact style it can be used as a textbook for astronomers/physicist new to the subject of radio
astronomy. Thisbook is particularly useful when searching for references on a certain topic; for each
chapter it contains genera references to standard textbooks/articles.
The book is organized in 13 chapters.

Chap. 1. Radio Astronomical Fundamentals

Chap. 2. Electromagnetic Wave Propagation

Chap. 3. Wave Polarization

Chap. 4. Fundamentalsof Antennatheory

Chap. 5. Filled Aperture Antennas

Chap. 6. Interferometersand Aperture Synthesis

Chap. 7. Receivers

Chap. 8. Emission Mechanisms of ContinuousRadiation

Chap. 9. Some examples of Thermal and Nonthermal Radio Sources

Chap. 10. Line Radiation Fundamentals
Chap. 11. Line Radiation of Neutral Hydrogen
Chap. 12. Recombination Lines

Chap. 13. Interstellar Moleculesand Their Line Radiation
Appendices  on vector relations, Fourier and Hankel transform,Electromagnetic Field Quantities and Calibration
Radio Sources

2. SynthesisImaging in Radio Astronomy Ed. RA. Perley, F. Schwab, A.H. Bridle
Astronomica Society of the Peacific (1989)
ISBN: 0-937707-23-6
These are the proceedings of a summer school on Synthesisimaging held in Soccorro, New Mexico in
June 1988. The course was organized by the National Radio Astronomical Observatory (NRAO) for
potential users of the VLA and the VLBI network.
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The lectures in the book can be divided in two parts; One part gives an introduction into the theory of
aperture synthesis (Chap. 1-11), the other part (Chap 12-25) covers more advanced topics. This book
is very useful for beginning and experienced radio astronomers. The topics are al related to aperture
synthesis and often related to working with the VLA. Thisis, however, not a disadvantage because in
many respectsthe WSRT operatessimilar tothe VLA. Thetopicsare discussed ingreat detail by various
authorsthusin various styles.

The book contains detailed discussion of aperture synthesis and related topics.

Chap. 1. Coherencein Radio Astronomy B.G. Clark
Chap. 2. The Interferometer in Practice A.R. Thompson
Chap. 3. The Primary Antenna Elements Peter J. Napier
Chap. 4. Cross Correlators L.R. D’Addario
Chap. 5. Calibration and Editing E.B. Folamontand R.A. Perley
Chap. 6. Imaging R.A. Sramek and F.R. Schwab
Chap. 7. Sensitivity PC. Craneand PJ. Napier
Chap. 8. Deconvolution T. Cornwell and R. Braun
Chap. 9. Self-Calibration T. Cornwell and E.B. Fomalont
Chap. 10.  Error Recognition R.D. Ekers
Chap. 11.  ImageAnaysis E.B. Fomalont
Chap. 12.  Spectral Problemsin Imaging W.D. Cotton
Chap. 13.  Wide Field Imaging |: Bandwidth and Time-Average Smearing A.H. Bridleand F.R. Schwab
Chap. 14.  Wide Field Imaging I1: Imaging with Non-Coplanar Arrays R.A. Perley
Chap. 15.  Wide Field Imaging |1: Mosaicing T. Cornwell
Chap. 16.  High Dynamic Range Imaging R.A. Perley
Chap. 17.  Spectral Line Imaging I: Introduction P. Roelfsema
Chap. 18.  Spectral LineImagingIl: Calibration and Analysis JH. van Gorkumand R.D. Ekers
Chap. 19.  Very Long Baseline Interferometry |: Principlesand Practice R.G. Walker
Chap. 20.  Very Long Baseline Interferometry I1: Thetechniquesif Spectral ~ PJ. Diamond
lineVLBI
Chap. 21.  Solar Imaging with a Synthesis Telescope T. Bagtian
Chap. 22.  SynthesisImaging of Spatially Coherent Objects K.R. Anantharamaiah, T.J. Cornwell and R. Narayan
Chap. 23.  Noisein Imaging of Very Bright Sources K.R. Anantharamaiah, R.D. Ekers, V. Radhakrishnan,
T.J. Cornwell and W. Miller Goss
Chap. 24.  Synthesis Observing Strategies— A ‘Hitch-Hikers Guide' A.H.Bridle
Chap. 25.  TheDesign of Aperture Synthesis Arrays R.M. Hjellming

3. Interferometry and Synthesisin Radio Astronomy A.R. Thompson, J.M. Moran and G.W.

Swensonjr.

John Wiley & Sons, New York (1986)

ISBN: 0-471-80614-5
The authors of thisbook, who areinvolved in operating the VLA, lay emphasis on the technical aspects
of radio interferometry. This book is of use for the astronomers who are interested in the theory and
implementation of radio techniques, especially interferometry. However, the book isnot writtenfrom an
engineer’spoint of view. A clear mathematical notation is used throughout the book and mathematics
isused to clarify, not to explain.
The book can be used by both the astronomers novice in the field of radio interferometry as the more
experienced users. There isaclear division between the introductory sections and the more advanced
topics.
The book contains detailed discussion of aperture synthesis and related topics.
Each chapter contains a bibliography and references. It contains 15 Chapters.

Chap. 1. Introductionand Historical Review

Chap. 2. Introductory Theory of Interferometersand Correlator Arrays
Chap. 3. Further Theory of the Interferometer Response

Chap. 4. Geometrical Relationshipsand Other Practical considerations
Chap. 5. Design of Arrays

Chap. 6. Response of the Receiving System

Chap. 7. Design of the Analog Receiving System

Chap. 8. Digital Signal Processing

Chap. 9. Very-Long-Baselinenterferometry

Chap. 10.  Calibration and Fourier Transformation of Visibility Data
Chap. 11.  Image Processing and Enhancement

Chap. 12.  Interferometer Techniquesfor Astrometry and Geodesy
Chap. 13.  Propagation Effects

Chap. 14.  Radio Interference

Chap. 15.  Related Techniques
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4. Radio Telescopes WN. Christiansen and J.A. Hogbom

Cambridge University Press (1969, 1985(2" ed.))

ISBN: 0-521-26209-7 (2™ ed.) / 0-521-07054-6 (1% ed.)
The writers of this book ‘... aim to present to newcomers in radio astronomy a short survey of the
development of radio telescopes (...) with enough simplified theory to enable them to understand the
fundamental s of radio telescope design. .
In the book there is an emphasis on the rel ation between aperture distribution, grading, beamshape, etc.
A number of possible antenna forms and configurationsis discussed, aperture synthesisis only one of
antenna systems discussed. The chapter on aperture synthesis has been rewritten completely for the 2"
edition.

Chap. 1.  Introduction

Chap. 2. Some Theory

Chap. 3.  The Steerable Parabolic Reflector (Paraboloid of Revolution)
Chap. 4.  Other Typesof Filled-Aperture Antennas
Chap. 5. Some More Theory

Chap. 6.  Unfilled-Aperture Antennas

Chap. 7. Synthesis Techniques

Chap. 8. Senitivity

App. 1. Celegtial Coordinate System

App. 2. The Fourier Transform

App. 3. Available Correlated Power

. Galactic and Extragalactic Radio Astronomy (2nd edition) Ed. G.L. Verschuur and K.l
Kellerman

Springer Verlag, Berlin (1988)

ISBN: 0-387-96575-0/ 3-540-96575-0
The second edition of Galactic and Extragal actic Radio Astronomy is* intended for graduate studentsand
practicing astronomerswho whish to familiarizethemse ves with the weal th of astronomical phenomena
that are“ visible’ at radio frequencies'.
The book does not discuss the technical aspects of radio astronomy. (In the first edition there was a
very good introductionary chapter on radio interferometry, but that one has been removed in the second
edition). However, alarge number of astrophysical and observational topics is discussed. The book
gives a broad overview of thekind of astronomy possible using the technique of radio astronomy.
The book has 15 chapters written by different authors. Each chapter contains a section “ Recommended
Reading” giving reference to standard books and articlesin thefield.

Chap. 1. Galactic Nonthermal Continuum Emission C.JSdlter and R.L. Brown
Chap. 2. HIl Regionsand Radio Recombination Lines M.A. Gordon
Chap. 3. Neutral Hydrogen and the Diffuse Interstellar Medium S.R. Kulkarni and C. Heiles
Chap. 4. Molecules as Probes of the Interstellar Medium and of Star  B.E. Turner

Formation
Chap. 5. Interstellar Moleculesand Astrochemistry B.E. Turner and L.M. Ziurys
Chap. 6. Astronomic Masers M.J. Reid and JM. Moran
Chap. 7. The Structure of Our Galaxy Derived from Observationsof Neu- ~ W. Butler Burton

tral Hydrogen
Chap. 8. The Galactic Center H.S. Liszt
Chap. 9. Radio Stars R.M. Hjellming
Chap. 10.  SupernovaRemnants S.PReynolds
Chap. 11.  Pulsars D.C. Backer
Chap. 12.  Extragalactic Neutral Hydrogen R. Giovanelli and M.P. Haynes
Chap. 13.  Radio Galaxies and Quasars K.I. Kellerman and F.N. Owen.
Chap. 14.  TheMicrowave Background Radiation JM. Uson and D.T. Wilkinson
Chap. 15.  Radio Sourcesand Cosmology JJ. Condon

. Radio Astronomy (2nd edition) J.D. Kraus

Cygnus-Quasar Books, Ohio (1986)

ISBN: -
‘Radio Astronomy embraces a wide range of topics from astrophysical phenomena to receiver and
antenna design. The aim of this book is to bring together a balanced selection and treatment of these
topicsthat iselementary enough to serve asanintroductionto radio astronomy yet issufficiently detailed
to be useful as a teaching text and reference work.”.
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Radio Astronomy is one of the classic text booksin thefield. The more technical chaptersin thisbook
are written from an engineers point of view.

Chap. 1 Introduction

Chap. 2 General Astronomy Fundamentals

Chap. 3 Radio-Astronomy Fundamentals

Chap. 4 Wave Polarization

Chap. 5 Wave-Propagation Fundamentals

Chap. 6 Radio-Telescope Antennas

Chap. 7 Radio-Telescope Receivers by M.E. Tiuri and A.V. Raisanen
Chap. 8 The Radio Sky, Spectra, The Solar System and Our Galaxy
Chap. 9 Pulsars

Chap. 10  Extragalactic Radio Astronomy

Chap. 11  Radio Surveys

Chap. 12 SETI

App. 1 List of Radio Sources

App. 2 Messier'sList of Nebulous Objects

App. 3 FrequenciesAllocated for Radio Astronomy

App. 4 Relation of Beamwidth and Side-Lobe Level to ApertureDistribution

App. 5 Noise-Temperature-Noise-FigureChart
App. 6 Precession chart

App. 7 Equatorial- to Galactic-Coordinate Conversion
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9.2 DICTIONARY

To provide quick reference to the literature and to help the aspirant and unexperienced radio astronomer cope
with the jargon we present a dictionary with a couple of the most common words in radio astronomy. We in-
cluded references to the the books from the previous section (e.g.book: ne. 1 pp. 6) or to the User Documentation
(e.g. userdoc: 11-9-13) were the concepts are introduced or explained.

aliasing— TheFourier transformfromthew, v plane
to the image plane will produce a replicated
brightnessdistribution. If the brightness distri-
bution containsstructuresthat areunder-sampled
inthewu, v-planethen structuresinthereplicated
brightnessdistributionwill overlap and diasing
OCCUrs.
references: bOOK: no. 3 pp. 110-111, userdoc:
chapter 5.

antenna pattern — The antenna pattern, (A), aso
called power pattern, describesthe sensitivity of
the antenna to power from different directions.
Often normalized by dividing through the max-
imum value of the pattern, Ay = A/Apae =
A/A(0).
references: DOOK: no. 1 pp. 62, book: no. 6 pp. 24 .

bandwidth smearing — Bandwidth smearing refers
to distortion occurring on the edges of maps, far
from the fringe stopping center center (=phase
center), when observing with large bandwidth.
It occurs because the phase correctionisapplied
for only one frequency in the band so other
frequencies will have dight phase errors, aso
referred to as chromatic aberration.
references: DOOK: no. 2 pp. 32, 247-253, book: no. 3 pp.
169.

baseline-pole— Baseline-poleis defined by theline
through the two elements of an interferometer.
For the Westerbork array the declination of the
baseline pole is defined as the declination of
the line through the fixed telescopes. An error
in baseline pole introduces a phase error in the
visibility data
references userdoc: part 1V chapter 1.1.

part 11

channel map — Map of the brightness distribution
in one frequency channel

CLEAN — Algorithm used to deconvolve mapsi.e.
remove the effects of the dirty beam.
references Userdoc: |1-5-7 , Hogbom (1974), book:
no. 2 pp. 167-181. book: no. 3 pp. 343-349

coherence function — The (source) coherence func-
tion is a measure of the coherence of radia-
tion coming from different points of the source.
A source is incoherent when radiation coming

from different points on the source is incoher-
ent. The coherence function isthen zero.

In many textbooks the theory of aperture syn-
thesis is explained in terms of the coherence
function.

references: DOOK: no. 3 pp. 60-63 book: ~o. 1 pp. 101-
105 book: o2 pp. 1-9 For synthesisimaging of
coherent sources see;book: ro. 2 pp. 415-427

degradation factor — Factor withwhich the sensitiv-
ity decreasesif instead of an anal ogue correl ator
adigital correlator isused

dirty beam — Thedirty beamistheFourier transform
of the visibility coveragei.e. al the (complex)
u, v pointson which the visibility is measured.
Intheimage planethedirty beam correspondsto
theimage of apoint source in the phase center.

dirty map — Dirty map isthe map which is obtained
when Fourier transformingthevisibility data. It
isthe convolution of the brightnessdistribution
and the dirty beam.

fringe — Oscillating output signal of a correlator
correlating the signal from two antennas which
formaninterferometric element. Thefrequency
of the oscillation is caled the fringe rate or
fringe frequency. The amplitude of the fringe
depends on the power in the spatial frequency
to which the interferometer is sensitive. For a
point source the phase of thefringeisameasure
of the positionof the sourcerel ativeto thephase
reference point.
references: booK: no. 3 pp. 91-92, book: no. 6 pp. 6.20,
userdoc: 11-2-1, ,more about fringe frequency
for the WSRT: userdoc: 111-10-1

fringe stopping — or fringe rotation reduces the
fringerateto zero by introducing phase rotation
and extra delay. This is done to obtain maxi-
mum signal over the bandwidth and to reduce
the sample frequency with which the fringes
need to be measured.
references: DOOK: no. 3 pp. 149 book: no. 2 pp. 19,77
grading— or illumination. The grading isacomplex
function that describes the current distribution
over the aperture.
references userdoc: 11-5-1, book: no.4 pp. 29.
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grating ring — ellipsoidal structure around sources

inamap. They are theresult of theradial sam-
pling in the u, v plane. If the v, v sampling is
done of basdlineincrements of AD,, thegrating
rings will be elipsoids of semi-axes k/AD,
and k/(ADj siné) radians in right ascension
and declination. Grating rings can be removed
using CLEAN.

references userdoc: 11-5-6 book: no. 1 pp. 117 book:
no. 6 pp. 6-33,34

Hamming — Taper function, in the time domain it

has the form:
() = 0.54 + 0.46003(7%) for|t| < T
10 for|t| > T

This function goes smoothly to zero at time 7.
userdoc: Part 11 chapter 8. book: no.3 pp. 339

Hanning — Taper function named after van Hann,

an Austrian mathematician. Inthetime domain
it has theform:

_f 3(1+cos(Z)) forft|<T
f(t)_{é ! for|t| > T

This function goes smoothly to zero at time T.
The Fourier transform of this window function
in the frequency domain, or the observed spec-
tral response at frequency ro to a monochro-
matic point source situated at frequency v, is
given by

1 1
Flrvo-v) = ES(VO —-v)+ ZS(I/O —v+b)
1
—|—ZS(1/0 —v—1")

where b = B/Np is the channel separation.
(B istotal bandwidth and Nr isthe number of
frequency channels)

references userdoc:  Part 11 chapter 8. book: no. 3 pp.
339

Jansky — flux density unit named after radio astron-

omy pioneer Karl G. Jansky who wasthefirst to
measure radio radiation from the sun in 1932.
1 Jy=10"?Wattsm=2 Hz !

image domain — or image plane contains a descrip-

tion the brightness distribution as function of
some coordinate on the sky.

mosai cing — Process of combining multiple obser-

vations with different pointingsinto one single
map with afield of view that may belarger than
thefield of view of asingle primary beam.
references userdoc:  part 111 chapter 6 book: .2 pp.
277-286

phase reference point — also fringe stopping point,
or phase center. Position on the sky for which,
for al observing frequencies, the phase of the
visibility function is zero. In most cases the
center of the field i.e. the pointing position is
chosen as such.
references userdoc:  part 11 chapter 2 book: no.2 pp.
14 book: no. 3 pp. 80

polarization angle — Angle of linear polarized radi-
ation as measured from north (0°) through east
(90°). PA = 1/2arctan(U/ Q) whereU and
are Stokes parameters.
references userdoc:  111-4-1

primary beam — In principlethisis the antennare-
sponse power pattern of a single antenna ele-
ment. In practice the primary beam also cor-
rects for other instrumental effects which cause
signal attenuation.
references userdoc: part |11, section 8.1.

sengitivity — is a measure of the weakest source
which, inthe absence of confusing sources, can
be detected with confidence. It is often defined
as the signal corresponding to the r.m.s. error
deflectionsin amap due to thermal noise.
references userdoc:  11-7-3 book: no. 2 pp. 139-165
book: no. 3 pp. 155-168 book: o 4 pp. 226-246
book: no.6 pp. 7-10

Shah function — Function introduced by Bracewell
(e.g. 1978) dso called sampling function. It is
defined by

+o0
Hi(z) = Y 6(x—n)

n—=—oQ

references:

Bracewell, R.N. (1978): “ TheFourier Transformand Its
Applications (2nd edition)” McGraw-Hill Interna-
tional Book Company. ISBN 0-07-007013-X.

userdoc: 11-4-1

Stokes parameters — The Stokes parameters (7, @,
U, and V) are used to describe the polariza-
tion properties of electromagnetic waves. 12 =
Q%+ U?+V?2isameasurefor thetotal intensity
inawave. U and () areameasurefor theamount
of linear polarizationand V' isameasure for the
amount of circular polarization. If V' = O there
isonly linear polarization. If /' = @ = Othen
the polarizationiscircular.
references userdoc: part 111, chapter 4. book: ro.1 pp.
36-39
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temperature, antenna — temperature related to the
power received by aradio antenna. 74y = AWV—%
where W, isthe power received in afrequency
band with width Av and & is the Boltzmann's
constant.
references userdoc:  part |1 chapter 7 book: no. 1 pp.
68 book: no 3 pp. 10

temperature, brightness — The temperature related
to the power emitted by a source (by means of
the Rayleigh-Jeanslaw)
references userdoc:  part |l chapter 7 book: no. 1 pp.
9-13 book: no. 3 pp. 8

temperature, system — Temperature corresponding
to the noise power of the receiver and al the
other sources of unwanted noise. Important for
the determination of sensitivity.
references: Userdoc:  11-7-4 book: no.2 pp. 139-165
book: no. 1 pp. 133 book: no. 3 pp. 155-168 book: wo.
6 pp. 7-10

taper — or window functionsare used to control the
shape of a beam after Fourier transformation.
They are used when in two cases:

— thecross correlation function (CFF) is ta
pered to reduce the sidel obes of the beam
in the frequency domain.

— thevisibilitiesintheu, v plane are tapered
to reduce the sidel obes of the beam in the
image plane

In the spatial frequency plane (i.e. u, v-plane)
the grading function is often used to taper the
data. ( The grading actually isthe combination
of ataper and a u, v-sampling function.)
references userdoc: part 1l chapter 5and 8

tied array — in the tied array mode al telescopes
of the array are autocorrelated to obtain alarge
collective area.  High spatial resolution is not
obtained. Thismodeisused for VLBI observa-
tionswhenthe WSRT isone stationinthearray.
references userdoc:  111-1-3 book: no.3 pp. 339

VLBl — Very Long Basdline Interferometry. In
Westerbork two specia backends/recorders are
available for participating in VLBI observa
tions.
references userdoc: 111-1-3 book: no. 2 pp. 355-393

visibility— or visibility function describesthebright-
nessdistributionintermsof it’s Fourier compo-
nents(thefringes). (It'sunitsareW m~2Hz~1.)
Thompson (book: ne.2 pp. 4) describesthevisibil-
ity asused in astronomy ‘visibility isacomplex
guantity, the magnitude of which has the di-
mension of spectral power flux density. It can

be regarded as an unnormalized measure of the
coherence of theelectric field, modified to some
extend by the characteristics of the interferom-
eter.’

references: DOOK: no. 3 pp. 55 book: no. 1 pp. 109 book:
no 6 pp. 6-24

Westerbork Unit — equals 5mJy, unit used for the
standard WSRT visibility output on disk/tape.
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