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PART II

CHAPTER 1

INTRODUCTION

In this part we present some of the basic theory of aperture synthesis and related techniques. Our intention
is to present a text which can be used by astronomers who need to refresh their basic knowledge of aperture
synthesis. Scientists for whom this text is the first encounter with radio interferometry are advised to read one
of the books discussed in section 9.1.
The WSRT is an aperture synthesis telescope. It combines thousands of interferometer measurements to
construct an image as if this image was measured by a large single aperture antenna. The quantity that is
measured by an interferometer is called a visibility. From a set of visibility measurements one can obtain a
brightness distribution using a Fourier transformation.
In chapter 2 we explain how an interferometer can be used to measure the visibility. In chapter 3 we explain
how we obtain a brightness distribution from the visibilities. The Fourier transformation and its properties are
discussed in chapter 4.
Although the Fourier transformation from visibility to brightness distribution seems rather straightforward
there are a number of complications. One of those complications is for example that visibilities are measured
as function of baseline separation and orientation. In order to get a complete and unambiguous description of
the brightness distributionone needs to measure the visibilityin all orientationsand on all baseline lengths from
zero out to infinity. This is of course not possible. Another complication is that the numerical implementation
of the Fourier transformation (Fast Fourier transformation) interpolates the visibilitydata onto a computational
grid. Both effects act as filters and introduce artifacts in the astronomical images. In chapter 5 we explain the
effects of these and other “filters” and discuss the measures that are taken to reduce the unwanted side-effects.
Our purpose is to obtain the fluxes or brightness temperatures as a function of position in RA,DEC on the
sky, in chapter 6 we discuss the coordinate systems used in Westerbork. In chapter 7 we discuss the relation
between temperatures and brightness. We also discuss how the sensitivity of a telescope can be calculated. We
only discuss the theory, for the sensitivity of the WSRT see part III (“Specific Aspects of the WSRT Synthesis
Telescope”), chapter 2.
The whole discussion in chapter 2, 3, and 5 applies to ‘monochromatic’ images. In practice more frequency
bands (channels) are measured at the same time. The relations between these measurements and the frequency
spectrum are roughly the same as the relations between visibility and brightness distribution. The Fourier
relations between the measurement and the spectrum and the artifacts introduced when producing spectra are
discussed in chapter 8.
The closing chapter (9) contains a bibliography and references to important articles. We also included a
dictionary to help you cope with jargon.

II-1-1
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PART II

CHAPTER 2

THE MEASUREMENT OF VISIBILITIES

by Olaf Kolkman. Based on texts and pictures of the books discussed in section 9.1

In this chapter we will define visibility and we will show how visibilities are measured with a simple
interferometer. We keep the mathematical description as simple and as general as possible.
Notation: Because we deal with electromagnetic waves, a complex quantity, we use the notation z =jzjejΦz = jzj �cos(Φ) + j sin(Φ)� where jzj is the amplitude and arg(z)=Φ is the phase of the wave. We will
denote the real and imaginary part of z by <(z) = jzj cos(Φ) and =(z) = jzj sin(Φ) respectively. Boldfaced
letters like s denote vectors.

2.1 THE BASIC EQUATION OF APERTURE SYNTHESIS

The basic relation of aperture synthesis can be written as:V(D�) = Z
4� B0(�)e�j2�D���dΩ (2.1)

where V(D�) is a complex function called the visibility function. It can be measured using a two element
interferometer separated by the vector D�, whose length is expressed in units of wavelength. � is the
difference between an arbitrary direction vectors and the pointing direction vector of the telescope s0, which
also is referred to as the phase reference point or phase center. The quantityB0(�) is directly related to the
brightness distribution of the source, the quantity we are interested in. The visibility V(D�) can be measured
using a correlating interferometer.
The functional form of equation 2.1 is that of a Fourier transform (chapter 4). Equation 2.1 can be inverted to
obtainB0(�) from which we can obtain the real brightness distributionB(�).
Note that we used a generalized coordinate system here. In order to invert equation 2.1 we have to choose a
specific coordinate system. A discussion of the coordinate system will be given in chapter 6.

2.2 A SIMPLE CORRELATING INTERFEROMETER

In this and the following section we will illustrate how in theory visibilities can be obtained using an
interferometer. In this treatment we use a simplified interferometer. A working interferometer is much
more complicated. We refer to Thompson et al. (1986) and Perley et al. (1989) for a more detailed and
complete discussion.

II-2-1
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Figure 2.1: A simple interferometer

2.2.1 RESPONSE TO A MONOCHROMATIC POINT SOURCE

The response of a simple correlating interferometer to a point source radiating monochromatic radiation is
a sinusoidal function whose frequency depends on the spacing between the antennas and the direction of
viewing.
Consider two identical parabolic mirrors separated by a vector D� (figure 2.1) measuring monochromatic
radiation of frequency � from a point source in the direction s0. jD�j is expressed in units of wavelength.
s0 is a vector of unit length. We will assume a plane parallel wavefront and ignore atmospheric and other
disturbances.
The signal in telescope 2 will be proportional to sin(2��t). The signal in telescope 1 will be phase shifted by
an amount 2���g, where �g is the geometrical delay. It can be shown that ��g = D� � s0. The response of a
multiplying correlator will be: r / 2 sin(2��t) sin(2��(t� �g))= cos 2���g � cos(4��t) cos(2���g)�sin(4��t)sin(2���g) (2.2)

The sine and cosine terms with t are oscillating rapidly. These high frequency terms (cos(4��t) cos(2���g)
and sin(4��t) sin(2���g)) are filtered out leaving the low frequency term:r / F (D�; s0) = cos 2���g = cos(2�D� � s0) (2.3)

When tracing the point source, the direction of the vector s0 varies with time so the output of the correlator
will be a sinusoidal function F depending on D� and s0. The function F is called the fringe function. The
frequency of F is a function of jD�j (figure 2.2).

2.2.2 RESPONSE TO A MONOCHROMATIC EXTENDED SOURCE

We have shown above what the response of an interferometer to a monochromatic point source is. We will
now investigate what the response of a simple interferometer to an extended source is. We will define the
visibility.
Let us now point our simple interferometer at an extended source with surface brightness B(�), radiating
quasi monochromatically at a frequency � in a band of width d�.
The telescopes are pointed towards the center of the source in the direction s0; this point is referred to as the
phase reference point or the fringe stopping center. A sky area of size dΩ in the direction s = s0 + � will
contribute a component of power in each of the antennas that is proportional toA(�)B(�)d�, whereA(�) is the
reception pattern or power pattern which describes the sensitivity of the antenna element for radiation coming

Version: 1.0.0 August 17, 1993
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Figure 2.2: The fringe function for two different tele-
scope spacingsD� = 3 andD� = 5. The angle � is the
hour angle in radians. The amplitude is normalized.

from different directions. The output of the correlator due to radiation from direction s will be proportional to
the power in the antennas from direction s and the fringe function in direction s, F (D�; s) = F (D�; s0 + �).
The response of the interferometer to radiation from the source can be obtained by integrating over the source,
assuming that signals from two different directions do not correlate i.e. the source is spatially incoherent:r(D�; s0) = d�A(0) Z

4� AN (�)B(�) cos
�(2�D� � (s0 + �)� dΩ= d�A(0) cos(2�D� � s0) Z

4� AN (�)B(�) cos(2�D� � �)dΩ�d�A(0) sin(2�D� � s0) Z
4� AN (�)B(�) sin(2�D� � �)dΩ (2.4)

where AN (�) = A(�)=A(0) is the normalized antenna reception pattern. We remind you that r(D�; s0)
should be read as the response of a correlating interferometer with baseline vector D� pointed at s0.
We now define the visibility as V � Z

4� B0(�)e(2�jD���)dΩ = jVjejΦV (2.5)

.
The phase of V, ΦV is measured relative to the phase reference point at s0, and B0(�) = AN (�)B(�) is the
modified brightness distribution. The real and imaginary parts of V can be separated so we obtain:Z

4� AN (�)B(�) cos(2�D� � �)dΩ = jVj cos ΦV (2.6)

Version: 1.0.0 August 17, 1993
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4� AN (�)B(�) sin(2�D� � �)dΩ = �jVj sin ΦV (2.7)

Substituting 2.6 an 2.7 in 2.4 we can rewrite the response as:r(D�; s0) = d�A(0)jVj cos(2�D� � s0 � ΦV) (2.8)

The equation above also demonstrates that the response to a monochromatic extended source, i.e. the output
of the correlator, is a fringe pattern with a frequency corresponding to that of a hypothetical point source at
the position s0. The amplitude of the fringes is proportional to the visibility and when phases are measured
relative to the response of the source at s0 then the phase of the response is that of the visibility.
If we take a close look at the equation above we can see that the response to a monochromatic extended source
is a direct measure of the visibility as defined in equation 2.5. The amplitude of the fringes is proportional to
the visibility amplitude. And the phase of the response, relative to the phase in direction s0, is the phase of the
visibility, ΦV .
Note that:
- We are using generalized coordinates. In practice a coordinate system will be used in which the visibility
and the response is only a function of projected baselines (u; v) (

pu2 + v2 = D� � s0).
- The response to a point source at s is exactly the response of a point source at s0, but phase shifted by an
amount proportional to the difference in path length between the two telescopes if pointed at s instead of s0,
i.e. ∆Φ = 2�(D� � s� D� � s0).
2.3 DELAY TRACKING

2.3.1 THE EFFECT OF BANDWIDTH

In practice we will not have an infinitesimally bandwidth. Let us first consider the effect on the fringe pattern
if we are observing at two different frequencies, �1 and �2 separated by a frequency ∆�. The two fringes will
add incoherently to a pattern as shown in figure 2.3.
At a certain phase ∆Θ there will be destructive interference. The correlator response, i.e. the product of the
visibility and the fringe function, will be zero at that phase and we can not measure anything at all. This sets,
at a given bandwidth, a limit on the geometrical delay �g for which there is correlation. Using equation 2.3
we can calculate that F (�g) � 0 for �� > 2���g > � so fringes will be measurable only if ∆�g � 1

∆� .
In general the fringe pattern has an envelope determined by the Fourier transform of the instrumental frequency
response, usually called the fringe washing function. This is discussed in Thompson et al. (1986, section 2.2
page 44). As an example we will show the effect of a box shaped bandpass filter on the fringe pattern.
Let us for the moment consider the simple case of the two element interferometer with a receiving system that
has uniform power response over a band of width ∆� centered on �0 (the bandshape function H(�) is zero
elsewhere). The antennas are pointed at a point source. The response to the point source in the infinitesimal
band d� at frequency � is a product of the modified brightness distributionB(s0), and the fringe function, F :dr = d�B(s0) cos(2���g)
This has to be integrated over all frequencies:r = 1

∆� 1Z
0

d�B(s0) cos(2���g)H(�)= 1
∆� �0+∆�=2Z�0�∆�=2

d�B(s0) cos(2���g)= cos(2��0�g) sin(�∆��g)�∆��g B(s0) (2.9)

Version: 1.0.0 August 17, 1993
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Figure 2.3: When two fringes of frequency � = 3 and� = 3:5 are added an interference pattern will result.
At hour angle � = 2� � 2k�(k 2 N ) destructive
interference will occur

The sine function of the above equation determines the envelope of the sinusoidal fringe. The response is
shown in figure 2.4. Note that the amplitude of the response is only proportional to the visibility amplitude
for �g = 0.

2.3.2 DELAY TRACKING

We have seen that if we track a source using an interferometer with a finite bandwidth the amplitude of the
response will be modulated by the fringe washing function i.e. the Fourier transform of the bandpass. To obtain
the highest response possible we delay the signal of one of the telescopes by an amount �i � �g(= 1�D� � s0).
The effect of delay tracking when observing a point source at s0 is that the path length difference is reduced
to zero so the fringe term will be unity and we are measuring a constant signal proportional to the amplitude
of the point source.
The effect of delay tracking when measuring an extended source is more complex and can be understood from
inspecting equation 2.8 for a delay tracking telescope:r(D�; s0) = d�A(0)jVj cos(2�D� � s0 � 2���i � ΦV)
Integrating over frequency, remembering that the fringe term D� � s0 � ��i is set to 0 and that the cosine
function is symmetric we obtain: r(D�; s0) = CA(0)jVj cos ΦV (2.10)

where C is an integration constant. From the above we see that using a delay tracking interferometer we
obtain jVj and ΦV .
At Westerbork a digital delay is implemented which corrects the signal at video frequencies. The delay is
implemented such that the delay is constantly changed as the hour angle of the pointing center changes. If
the delay would not be continuously changed the fringes would oscillate with the natural fringe frequency
(also see section 10.2 of part III). The process of reducing the fringe frequency to zero by maintaining
2�(D� � s0 � ��i) = 0 is called fringe stopping or fringe rotation.

Version: 1.0.0 August 17, 1993
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Figure 2.4: The point-source response of an interfer-
ometer with a box shaped frequency passband. The
abscissa is the geometrical delay �g .

2.3.3 BANDWIDTH SMEARING

Another effect of using a finite bandwidth is bandwidth smearing. Bandwidth smearing distorts the edges of
large broadband (continuum) maps. This is due to the fact that different frequencies have different baselines
lengths (in units of wavelength). Fourier transforming the visibilities assuming a baseline length equal to the
geometrical baseline length divided by the central wavelength will cause an underestimation of the baseline
length at lower frequencies and overestimation at the higher frequencies. This will introduce phase errors
which will lead to image distortions.
A mathematical treatment of these matters is given in chapter 13 in the textbook by Bridle and Schwab in
Perley et al. (1989).
Bandwidth smearing is a form of chromatic aberration.

2.4 SUMMARY

In the above we have shown that we can measure the phase and amplitude of the visibility of a source using a
delay tracking interferometer. We have also shown that the visibility is a function of D�, B(�), and s0 only.
This means that the visibility can be expressed as a function of the projected baselines.
Remember that three assumptions are made:

1. The source is at such a distance that the incoming radio rays are parallel to the antennas. This is a valid
assumption for most interferometers except for VLBI or millimeter interferometers observing objects
in the solar system.

2. The atmosphere does not influence the phase of the incoming waves and the equipment is stable. This
is of course never the case. See chapter 3 in part IV for more details.

3. Radiation from two different places in the source does not correlate i.e. the radiation is spatially
incoherent. This is a very important assumption. When sources are not spatially incoherent the relation
between brightness distributionand visibility is not a simple Fourier transform any more. (e.g. chapter 3

Version: 1.0.0 August 17, 1993
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in Thompson et al.(1986) or equation (1-3) in chapter 1 by Clark in Perley et al.(1989)). The term spatial
coherence function is sometimes used by authors as the quantity that is measured by interferometers.
The coherence function, Γ, is a function of spatial frequencies u, v and time � . The real part of this
function is basically what is measured by the WSRT digital correlator. Γ(u; v; � ) relates to the visibility
as: V(u; v; �) = 1Z�1 Γ(u; v; � )e�2���d� (2.11)

where � is the frequency of the observation.
Equation 2.11 is a temporal Fourier transform. It is of importance when discussing line observations.
For more details see the books mentioned below.
For a discussion of aperture synthesis in terms of the coherence function one is also referred to the books
mentioned below.

The system described above is an ideal simplified interferometer. Keep in mind though that in a working
interferometer the signal is being processed by amplifiers, filters, mixers, etc, each having their own gain and
introducing phase shifts to the signal.

2.5 REFERENCES

Perley, R.A., Schwab, F. and Bridle, A.H. (Editors) (1989): “Synthesis Imaging in Radio Astronomy”.
Astronomical Society of the Pacific.. ISBN:0-937707-23-6. (see also review in part II Chapter 9.1,
Book 2).

Thompson, A.R., Moran, J.M. and Swenson Jr., G.W. (1986): “Interferometry and Synthesis in Radio
Astronomy”. John Wiley & Sons, New York.. ISBN 0-471-80614-5. (see also review in part II
Chapter 9.1, book 3).
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CHAPTER 3

RECOVERING THE BRIGHTNESS

DISTRIBUTION

Based on a text from the old WSRT manual that was edited by A.G. Willis and originally based on articles by
J.A.Högbom, R.H. Harten and W.N. Brouw.

In chapter 2 we have seen that an interferometer measures complex visibilities V(u; v) and that the visibility
function can be transformed to obtain the brightness distribution.

3.1 IMAGE FORMATION AND FIELD OF VIEW

Let us rewrite equation 2.1 in the appropriate coordinates 1V(u; v) = 1Z�1 1Z�1 f(l;m; �0)AN (l;m)B(l;m)e�j2�(ul+vm)dldm (3.1)

The function f(l;m; �0) contains some additional terms (e.g. deviations from the ideal interferometer behavior)
which must be corrected for in the actual data reduction but need not be considered here further.
We may invert equation 3.1, by means of an inverse Fourier transform, to obtainB(l;m)AN (l;m) = 1f(l;m; �0) 1Z�1 1Z�1 V(u; v)e�2�j(ul+vm)dudv (3.2)

In practice we are not able to measure at all spacings, or (u; v) points, out to infinity so let us see how the data
is sampled.
Because B(l;m) andANB(l;m) are real functions of (l;m) it can be shown from the properties of the Fourier
transform that V(�u;�v) = V�(u; v) (3.3)

Thus it is sufficient to measure the complex visibilityV(u; v) over two adjacent quadrants in the (u; v) plane
since the data in the other half of the plane can be determined from equation 3.3.

1See chapter 6 for a discussion of the coordinate system which is used here. To understand this discussion it is enough to know that
the l;m coordinates are used to describe the brightness distribution and the u; v coordinates are used to describe the visibility distribution

II-3-1
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Figure 3.1: If we observe a source at a declination of
30�, with a standard line-setup, for a period of 12 hours,
we will cover the (u; v) plane with 38 ellipses (or 40
depending on the position of the movable telescopes).

For an E-W interferometer we can rewrite the u; v coordinates as a function of baseline length and source
position in declination and hour angle (cf. 6.3 and 6.4 in chapter 6)u = D� cosh0v = D� sinh0 sin �0

It can be seen from these equations that when an interferometer tracks a source over a range of hour-angles,
the projected interferometer baseline will trace out an ellipse in the (u; v) plane. In a 12 hour measurement,
during which the earth rotates the interferometer baselines over 180�, all quadrants in the (u; v) plane will be
covered with ellipses because of the symmetry of the visibility function (V(�u;�v) = V�(u; v)).
In a 12 hour measurement the WSRT (in standard line setup) samples 40 ellipses 2 in the (u; v) plane. The
ellipticity depends on the declination of the source. The size of the major axis of a certain ellipse depends
on the distance between two particular telescopes. An example is shown in figure 3.1. When a redundant
configuration is used up to 91 ellipses, of which about half will overlap with others, can be produced.

2N.B. actually 38 baselines are sampled most of the time, as 0A=9C and 0B=9D
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CHAPTER 4

THE FOURIER TRANSFORMATION

Based on a text from the old WSRT manual. The text was originally edited by A.G. Willis based on articles
by J.A.Hógbom, W.N.Brouw and R.H.Harten. The text has been updated and the original figures have been
redrawn by O.M. Kolkman

4.1 INTRODUCTION

In the previous chapters we have shown that we can, in theory, obtain a brightness distribution from visibility
data using Fourier transforms. In this chapter we review the basic theory of those transformations.

4.2 THE FOURIER TRANSFORM

The Fourier transform of the function f(x) is defined asF (s) = 1Z�1 f(x)e�j2�xsdx (4.1)

The inverse transformation is defined as: f(x) = 1Z�1 F (s)ej2�xsds (4.2)

In the two dimensional case the definitions are similar. The Fourier transform and its inverse are written asF (u; v) = 1Z�1 1Z�1 f(x; y)e�j2�(xu+yv)dxdy (4.3)f(x; y) = 1Z�1 1Z�1 F (u; v)ej2�(xu+yv)dvdu (4.4)

The properties of the Fourier transform are described in several text books among which the book by Bracewell
(1978) is a standard work. Several properties relevant to the subject of image processing are described in
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Gonzalez and Wintz (1987). This book also has a description of the fast Fourier transform (FFT) which is the
algorithm used in most of the computer applications.
Fourier transformation can be conceived more easily if we rewrite equation 4.2 in a discrete form:f(xi) = N�1Xk=0

F (uk)ej2�ukxi=N (4.5)

forxi = i∆x for i = 0; 1; 2; :::N � 1 and uk = k∆u for u = 0; 1; 2; :::N � 1
We see that the function f(x) is the sum of complex oscillators (F (u)ej2�ux=N) of frequency u, with an
amplitude jF (u)j and phase shifted by an amount arg(F (u)). The Fourier transform projects the function f(x)
on F (u) i.e. decomposes the function f(x) in oscillators.
The amplitude jF (u)j is often called the Fourier spectrum of f(x). It describes the relative contribution of
an oscillator with frequency u in f(x).
4.3 THE IMAGE AND SPECTRAL DOMAIN

In radio astronomy one often talks about the image or spatial domain and spatial frequency or u; v-domain.
In the image domain information is available in the way most people conceive information of objects i.e. as a
brightness distributionas a function of x and y. The spectral domain is a more abstract domain. It both contains
the relative amplitudes as well as the phases of the oscillators describing structures with spatial frequencies(u; v)
The Fourier transform transforms objects in the first domain into the second domain. A large structure in the
spatial domain will give rise to power at a point in the (u; v)-plane near the origin. The reciprocal of

pu2 + v2

is a measure of the size of structure and the amplitude of the complex visibility point is a measure of power.
Note that u and v are real but V(u; v) is a complex number. Small structures in the brightness distribution will
give rise to structure extending far from the origin of the (u; v)-plane.
Using synthesis techniques the visibilities are measured. As stated in equation 2.1 the brightness distribution
is the Fourier transform of the visibility. The visibility is a function in the spectral domain and contains
information about the spatial frequencies in the measured object.
Some functions f(x; y) and their Fourier Transform F (u; v) are shown in figure 4.1. They may be interpreted
as brightness distributions and their associated visibilities.

4.4 SOME IMPORTANT FOURIER RELATIONS

Some of the important theorems about the properties of Fourier transforms are summarized below. The reader
is referred to Bracewell (1978), Chapter 6, for derivations and proofs.

SIMILARITY THEOREM Scaling of the argument of a function will scale the Fourier transform of that function
and the argument of that Fourier transform.
If f(x) *) F (s) then f(ax) *) jaj�1F (s=a).
ADDITION THEOREM (also called the linearity theorem)
The Fourier transform of a sum of functions equals the sum of the Fourier transforms of the individual functions.

If g(x) *)G(s), f(x) *) F (s), h(x) *)H(s) and h(x) = f(x) + g(x) then H(s) = F (s) +G(s).
TRANSFORMATION OF FUNCTIONS Let us define even and odd (complex) functions. A function fe(x) is even
if fe(�x) = fe(x). A function fo(x) is odd if fo(�x) = �fo(x). The Fourier transform of an even function
is even. The Fourier transform of an odd function is odd. In general a complex function f(x) can always be
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Figure 4.1: Some functions f(x) and their Fourier
transforms F (s) are drawn. The x relates to s
as s = 1x . The shah function is defined as

III(X) = 1Pn=�1 �(x�n). The shah function is impor-

tant when sampling data. The sinc function is defined
as sincx = sin xx . Its Fourier transform, the unit rectan-
gle function is defined as Π = 1 for jxj < 1

2 and Π = 0
for jxj > 1
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Figure 4.2: Pictorial explanation of convolution; As-
sume we want to convolve two (discrete) functionsf(x)
and g(x) to obtainh(x) = f(x)�g(x). To find the value
of h(x1) we have to shift the function g(t) in such a
way that the origin of the dummy variable t is on the
position of x1 then we have to multiply all the valuesf(x1�3):::f(x1+3) by g(�3):::g(3) respectively and
then add them up.

separated in an even and odd part. How functions transform is shown in the diagram below.??�����)PPPPPq??f(x) = fo(x) + fe(x) = <fo(x) + j=fo(x) +<fe(x) + j=fe(x)F (s) = Fo(s) + Fe(s) = <Fo(s) + j=Fo(s) +<Fe(s) + j=Fe(s)
(4.6)

SHIFT THEOREM If the function f(x) is shifted horizontally in such a way that the new function becomesf(x + a), hen the Fourier transform of f(x+a) is the Fourier transform of the original function f(x) phase
shifted by e2j�as.
If f(x) *) F (s) then f(x + a) *) e2j�asF (s)
CONVOLUTION THEOREM The convolution of two functions f(x) and g(x) is another function h(x) defined
as h(x) � 1Z�1 f(u)g(x � u)du (4.7)

We denote the convolution of two functions by an asterisk (�) e.g. h(x) = f(x)� g(x). We refer to Bracewell,
chapter 3, for more information about the properties of a convolution.
Convolution is a process in which a function f(x) is smoothed by a function g(x). In figure 4.2 we give a
pictorial explanation of the convolution process. An example of a convolution is shown in figure 4.3.
In radio interferometric imaging we encounter convolution when looking at brightness distributions smoothed
by antenna patterns, when dealing with electronical signals and filters (e.g. effect of bandwidth), when digitally
sampling data in the backends of the receiving system and in many other cases
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0
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0

f(x)

g(x)

f(x)*g(x)

Figure 4.3: The convolution of a discrete function f(x)
with a smooth function g(x). The dashed lines are the
convolutions of g(x) with the individual spikes.

The convolution theorem states that the Fourier transform of the convolution of two functions equals the
product of the two Fourier transforms of these functions.
If f(x) *) F (s) and g(x) *)G(s) then f(x) � g(x) *) F (s)G(s)
COMPLEX CONJUGATES The complex conjugate of z = jzje�z equals z = jzje��z The Fourier transform
of the complex conjugate of a function f(x) is F �(�s), that is, the ‘mirror image’ of the conjugate of the
transform. f�(x) *) F �(�s) (4.8)

CORRELATION The correlation of two functions f(x) and g(x) is another function h(x) defined ash(x) � 1Z�1 f�(u� x)g(u)du = 1Z�1 f�(u)g(u + x)du (4.9)

where f�(x) is the complex conjugated of f(x) We denote the correlation of two functions by a small circle (�)
e.g. h(x) = f(x) � g(x). In contrast to the convolution where f � g = g � f , the correlation function is not
commutative f(x) � g(x) 6= g(x) � f(x)
It can be shown that f(x) � g(x) *) F �(s)G(s) (4.10)

SAMPLING THEOREM If we sample a function we evaluate the function at discrete points. In fact we multiply
the function by a series of delta functions separated by intervals ∆x.
Sampling is encountered at many places in synthesis imaging. Some examples:
- In the backend of the receiver the output signal is measured at discrete time steps.
-The u; v plane is not completely covered because of the discrete spacing of the antennas.
-A computer calculates the Fourier transform by approximating the Fourier integral by a sum (cf. equation 4.5).
The function under consideration is evaluated at discrete intervals.
The (Wittaker- Shannon or Nyquist) sampling theorem states that if a function f(x) is bandwidth limited i.e.
the Fourier transform of f(x) vanishes for values of s outside the interval [�W;W ], then the function f(x)

can be recovered completely if f(x) is sampled at a rate ∆x for which:

∆x � 1
2W (4.11)
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If the sampling rate does not satisfy this criterion (the Nyquist rate) aliasing will occur. This is illustrated in
figure 4.4
The sampling theorem is derived in Thompson al. (1986) section 4.11, Gonzalez and Wintz (1987) section
3.3.9 and in chapter 10 of Bracewell.
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Bracewell, R.N. (1978): “ The Fourier Transform and Its Applications (2nd edition)” McGraw-Hill Inter-
national Book Company. ISBN 0-07-007013-X.

Gonzales, C. and Wintz, P. (1987): “Digital Image Processing” Addison-Wesley Publishing Company
1987 ISBN 0-201-11026-1.

Thompson, A.R., Moran, J.M. and Swenson Jr., G.W. (1986): “Interferometry and Synthesis in Radio
Astronomy”. John Wiley & Sons, New York.. ISBN 0-471-80614-5. (see also review in part II
Chapter 9.1, book 3).
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Figure 4.4: Sampling of a function f(x) is done by
multiplying it with a sampling function s(x), the pro-
cess is shown in the left hand side of the diagram. In
the Fourier domain the multiplication is equivalent to
a convolution. The Fourier transform of the sampling
function is convolved with the Fourier transform off(x), right-hand side of the diagram. The sampling the-
orem gives a limit on ∆x for which there is no aliasing
and in which case the function f(x) can be recovered
from the data. Note that in this example aliasing will
affect the high frequencies only because the function
is nearly bandwidth-limited, this is not generally true.
Synthesized images may contain aliased sources at any
position.
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PART II

CHAPTER 5

FAST FOURIER TRANSFORM EFFECTS

Based on text from the first chapter of the old WSRT manual. That chapter was edited by A.G. Willis based on
articles by J.A.Högbom, R.H. Harten and W.N. Brouw. The text has been re-edited and the figures have been
redrawn by O.M. Kolkman

In the preceding chapters we have shown how a brightness distribution can be obtained from a set of visibility
measurements. We also reviewed the properties of the Fourier transform. In this chapter we discuss the
artifacts introduced because the visibility must be sampled on a finite grid before a fourier transformation
can be applied. We also discuss how these artifacts can be reduced and show what their appearance is in an
astronomical image.

5.1 FAST FOURIER TRANSFORM EFFECTS AND A SUMMARY OF THE FUNC-
TIONAL RELATIONSHIPS INVOLVED IN APERTURE SYNTHESIS

In this chapter we will show how we compute Fourier transforms of our visibility function.
Calculating the inverse of equation 2.1.(i.e equation 3.2) is accomplished by a discrete digital algorithm
called the Fast Fourier Transform (FFT). The details of this procedure need not concern us here (refer to e.g.
Bracewell (1986), chapter 18, or Gonzalez and Wintz (1987), section 3.4) but the FFT techniques require the
visibilitydata V(u; v) to be sampled at an evenly spaced rectangular grid of locations in the u; v plane. Instead
we have measured V(u; v) along a series of ellipses in the u; v plane. It is therefore necessary to interpolate
the measured V(u; v) onto a rectangular sampling grid by using a suitable convolving function, i.e. a function
whose Fourier transform has negligible sidelobes outside the area of interest. Often a Gaussian or a prolate
spheroidal function is used. We effectively distribute the values of V(u; v) over the rectangular sampling grid
with a weight that decreases as the distance of the rectangular sampling locations increases from the actualV(u; v) measurement locations on the u; v ellipses.
We will now incorporate the effect of this extra convolution and the discrete Fourier transform into the
following summary of data manipulation procedures which take place when we make a map of the sky by
means of aperture synthesis.
Let us show what happens in a simple pictorial form. In this description we will use the notation of the
previous subsections i.e. small letters represent functions in the u; v plane and capital letters represent their
Fourier transforms in the sky plane (l;m coordinates). Also the dot symbol (�) represents multiplication, an
asterisk (�) represents convolution and a double arrow (*)) represents a Fourier transform. Thus a �b *) A�B
represents the convolution theorem.
We define our functions as follows:
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Functions in u; v plane Their Fourier transform
b source complex visibilityfunction (in figure fig-

ure 5.1 we only show the (constant) visibility
amplitude)

B sky brightness distribution (in figure 5.1 a point
source)

a average spatial frequency sensitivity function
of a single antenna

A average primary beam power pattern of an in-
dividual 25-m antenna

c radial sampling function in u; v plane C radial grating function
t taper function in u; v plane T taper function
e convolution function to a rectangular u; v grid E Fourier transform of the convolution function

to the rectangular grid
f u; v plane rectangular grid sampling function F field repetition function

The functions are depicted in figure 5.1.
Note that V(u; v) as defined in equation 2.1 equals b�a as defined here; the grading function g(u; v) as defined
in section 5.2 equals c � t and G(l;m) also defined in that section is essentially, but not quite, equal to C � T .
The output map of the WSRT data is not merely a map of a region of the sky, but rather a map which has been
convolved and multiplied by several sampling and convolution functions. We begin our observing process
by pointing our antennas at a particular point in the sky. This region has a complex visibility functionb(u; v). We sample this distribution in two ways. First we limit our sky coverage by using highly directional
antennas. Secondly we only measure the complex visibility at discrete increments (36 m, 72 m, ...), therefore,
we actually observe a band of discrete spatial frequencies centered at each increment spacing. Over a 12 hour
observation, these bands trace out ellipses in the u; v plane. Thus we are measuring the convolution of the
complex visibility, b, and the antenna response, a, multiplied with a sampling increment function, c. This is
the nature of the data as it is put on tape in Westerbork.
The data is now ready for off-line reduction. Initially it is calibrated and edited. (We will assume a perfect
calibration for now, the effect of bad calibration is discussed in part IV chapter 3). After these corrections,
the data is ready for the map making process. Three operations are performed on the data before it is Fourier
transformed. The data is tapered by some taper, t, or grading function (see note above). This will tend to
enhance the amplitude of certain spatial frequencies with respect to others. Then the data is convolved with
a Gaussian or prolate spheroidal convolution function, e. This is necessary since, for the discrete Fourier
transformation routine we need to sample the data in the u; v plane with an evenly spaced rectangular grid
sampling function. After sampling we have the data in a form which can be Fourier transformed using the fast
Fourier transform method. Clearly, the output of this transform will not just be a map of the sky brightness
distribution, but the sky distribution multiplied or convolved with the Fourier transforms of the functions with
which b(u; v) was convolved or multiplied respectively.
Let us examine what the data will look like at various stages of reduction. Assume we are observing a
theoretical point source at the field center. The data, as it is collected at Westerbork, will consist of the source
complex visibility convolved with the antenna visibility response multiplied by the sampling function along
the baseline. This can be represented as (b � a) � c
Then after calibration a taper is applied to the visibility data; giving it a form�(b � a) � c� � t
Then it is convolved to a rectangular grid in the u; v plane. Thus we have,���(b � a) � c� � t� � e� � f
The data is now Fourier transformed, using a fast Fourier transform method, yielding the output map���(B �A) �C� � T � �E� � F
The effect of these different functions can be seen in figure 5.2.
The behavior of these functions in the sky plane can be described as follows. B is a delta function describing
a theoretical point source. A is a general tapering of the map field by the single antenna response (i.e. the
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Figure 5.1: Functions involved in the map making pro-
cess using the fast Fourier transformation, see text for
explanation
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primary beam) . Thus a point source would appear weaker , the further one moves it from the field center. C
produces the grating rings. T smoothes the data in some manner to suppress the sidelobes of the synthesized
beam. E also tends to taper the data and decreases the grating ring response as a function of distance from
the source position. If E is a Gaussian of narrow width, (or order of half the field size), then the height of
the grating rings will decrease quickly as the function of distance from the map center. Similar, if it is a
broad Gaussian, then the amplitude of the grating rings will decrease slowly as a function of distance to the
source position. This property of E is most important when considered in connection with the function F .
The function F is the most bothersome one. It produces a repeating mosaic of the map field spaced on a
rectangular grid whose points are separated one map width apart. We thus have not a single map but an infinite
grid of the same maps. This might not seem important until one realizes that when we produce a map of theu; v data, we make a map of the entire sky. We only look at a small portion of this sky map in our 512�512 or
1024�1024 points output map. This is quite reasonable since the primary beam has limited our usable field to
a small portion of the sky. The grating rings however are tapered mainly by the multiplication functionE and
may extend far beyond our usable field. Thus, any grating rings which might fall outside the field size of the
map might appear in the adjacent map. This produces the effect of ‘reflection’. (They are not true reflections,
but extensions from aliasing or an adjacent map.) To minimize this problem one should use a very narrow
width Gaussian E function, which would cut down the intensity of the overlapping or reflected grating rings.
The best solution would be to convolve the data to the rectangular grid with the aid of a convolving functione of the form sinc(x) (i:e: sin xx ), then the function E � F would be one in our primary map region and
zero elsewhere. Unfortunately, a sinc function convolution is very expensive in computer time. Figure 5.3
demonstrates the effect of different convolving functions. Both the multiplication function E and the single
antenna beam will attenuate the flux of a source displaced from the field center. To correct for this two things
are done. First, the map is multiplied by the inverse of the multiplication function E in the sky plane. Thus
the output map becomes, ����(B �A) �C� � T � �E� � F � � (1=E) (5.1)

This has the effect of correcting properly for the multiplication function within the map, except that the
reflections do not have a proper correction and in general are too low. This is acceptable as long as you do not
wish to remove them. Note that equation 5.1 is essentially the same as equation 3.2.
We can also correct for the primary beam attenuation by multiplying by 1=A. We can retrieve the proper
(convolved) sky brightness signal, but the noise everywhere in the map is also multiplied by 1=A, which
increases toward the edges of the map.

5.2 SYNTHESIZED BEAM AND GRADING

We have shown that during an observation the u; v plane is not covered completely. Before calculating the
Fourier transform of equation 3.2 we introduce a grading function g(u; v) to weight the measurements. The
grading g(u; v) is set to zero for all spacings (u; v) at which there are no measurements. The product ofV(u; v)g(u; v) is thus in contrast to the visibilityV(u; v) itself, known for all values (u; v). Replacing V(u; v)
by this produces the integral of equation 3.2, we obtain from the convolution theorem in Fourier analysisf(B(l;m)A(l;m)g �G(l;m) = 1f(l;m; �0) 1Z�1 1Z�1 V(u; v)g(u; v)e�2�j(ul+vm)dudv (5.2)

whereG(l;m) is the Fourier transform of the grading g(u; v). The convolution ofG(l;m) with the expression
within the curly brackets is equivalent to scanning the field with a telescope whose beam has the formG(l;m).
Thus this function, normalized to unity at maximum, will be called the synthesized beam.
The grading function,g, can be considered as a spatial frequency filter. The spatial frequencies in the brightness
distribution are multiplied by this filter, so in the image domain the brightness distribution is convolved with
the Fourier transform, G.
Let us for the moment consider a one dimensional slit. In optics the slit acts like a spatial frequency filter.
The grading function for a slit will be a boxcar function. The brightness distribution will thus be convolved
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Figure 5.3: A well choosen weighting function (taper,
grading) will reduce the power in the sidelobes. This
reduces reflections or aliasing
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with a sinc function (the Fourier Transform of a boxcar function). The intensity of a pattern projected by an
uniformly illuminated slit is exactly this sinc function.
The synthesized beam is proportional to the Fourier transform of the grading g(u; v) whose form we may
chose as we desire within the measured area of the u; v plane. A uniform grading (g(u; v)=1, where data was
actually sampled) over this area will result in a beam with a -13% sidelobe. The sidelobes become smaller, at
the expense of a somewhat wider synthesized beam, if the grading function is tapered towards the outer edge
of the measured region so as to introduce a smoother transition from areas with data to areas without data.
The truncated Gaussian grading (tapered to 25% at the maximum baseline) used by default in Westerbork
reduction programes gives a -5% first sidelobe.
In angular measure, the shape of the synthesized beam is extended in declination by a factor 1= sin �. This is
obvious also from the fact that the sampled u; v plane is only circular as viewed from the north celestial pole
and becomes elliptical with the ratio 1= sin � when seen from other declinations.
The standard grading results in a synthesized beam whose width between half power points is 0:8=D� radians
in right ascension and 0:8=(D� sin �) radians in declination whereD� is the maximum interferometer spacing
in units wavelengths.

5.3 GRATING RESPONSES

During a 12h observation, the function V(u; v) is only measured along a set of elliptical tracks in the u; v
plane. The grading, as defined in the previous subsection, is equal to zero between these tracks and the smooth
gradings discussed above give a simplified impression of the real situation. The finite number of measured
tracks results in a synthesized beam pattern G(l;m), given by the Fourier transform of the true grading, in
which the central maximum is accompanied by a set of concentric grating ellipses. Expressed in radians
these grating ellipses have semi-axes k=∆D� and k=(∆D� sin �) radians in right ascension and declination
directions, respectively where k is an integer and ∆D� is the regular baseline increment in wavelengths. The
amplitude of a grating is inversely proportional to the square root of its semi-minor axis. Thus, to minimize the
disturbances caused by the grating ellipses, the true baseline increments ∆D� should be small. A normal 12-h
measurement taken with each group of two movable antennas separated by 72 m (half the spacing between
the antennas in the fixed position array) yields an array in which the baseline is increased by regular 72 m
increments.
This regularity then produces a set of elliptical grating responses whose semi-axes at a wavelength of 21 cm
are multiples of 10 arc-minutes in right ascension and of 10= sin � arcmin in the declination direction. The
dimensions of the ellipses, like those of the synthesized beam are proportional to the wavelength. In figure 5.4
a cross-section is shown of the synthesized pattern including the first two grating responses. Adding a second
12-h measurement with the movable antennas shifted by 36 m will give a combined array with a regular
spacing of 36 m. This corresponds to grating ellipses with twice the previous size, i.e all the odd numbered
ellipses have been eliminated. after 2, 4, 8, etc. 12-h measurements with suitable positions of the movable
antennas, the remaining grating ellipses will be 2,4, 8 etc times as distant as in the original set of ellipses.

5.4 ERRORS, SIDELOBES AND CONFUSION

Sidelobes of all kinds will degrade the synthesis map by giving rise to deflections on the map which are not
at the position of the source which is their cause. Sidelobes appear as a consequence of the instrumental
design, the choice of observational procedure and missing observations due to equipment malfunctions. The
detailed shape of these can be calculated exactly and removed from the map by the CLEAN algorithm. Other
map degenerations are caused by atmospheric phase fluctuations and by unavoidable, small departures of the
instrument from its ideal calibrated performance like antenna dependent gain variations. These basically limit
the dynamic range but it is often possible to estimate their rms amplitude distributioneither from measurements
or from a knowledge of the general stability of the atmosphere and the critical parts of the instrument. In
principle the dynamic range can be improved by applying the SELFCAL (see e.g. the NewStar software
descriptions) algorithm.
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2nd measurement
1st measurement

Grating rings

Figure 5.4: Schematically drawn cross-section of the
synthesized beam pattern including the closest two grat-
ing rings for a single 12 h measurement when the
two movable antennas are at 72 and 144 m respec-
tively from the closest antenna of the fixed array. If
instead the antennas are placed at 36 and 108 m re-
spectively, the first and all other odd-numbered grat-
ing ellipses are reversed in amplitude as shown in the
second cross-section. Combining the two sets of mea-
surements, one can produce a map corresponding to a
synthesized beam in which all the odd numbered rings
have been eliminated. The remaining rings can be
eliminated by making further measurements with the
antennas in yet another settings of the movable tele-
scopes.

Chapter 3 gives practical examples of maps distorted by calibration imperfections and other instrumental and
atmospheric effects.
The set of grating ellipses discussed in the previous section is an example of the kind of sidelobe structure
which can be calculated exactly. The problem of separating sources from sidelobes can become serious when
the observed field contains sources which are larger in extent than the radius of the first grating responses
(or when sources fall on the position of the grating rings). must such cases the grating disturbances must be
eliminated, either by special data reduction procedures such as CLEAN (Högbom, 1974) or by adding further
12-h measurements.
No good quality measurements can be made at projected spacings which are smaller than the diameter of the
individual antennas (25 m) because then one antenna would be blocking (or shadowing) part of the aperture
of the other. Thus independent of the number of 12-h observations completed, there will always be a gap of
missing spacings centered at the u; v origin. Its radius is a function of the smallest projected spacing actually
used, but will usually be about 30m. The true grading of the synthesized aperture can therefore be written as:g(u; v) = gd(u; v) � go(u; v) (5.3)

where gd(u; v) is the desired complete set of ellipses in the u; v plane and go(u; v) represent those ellipses
close to the origin that have not been measured. The synthesized beam G(l;m) is proportional to the Fourier
transform of the grading and it follows that:G(l;m) = Gd(l;m) �Go(l;m) (5.4)

i.e the true synthesized beam equals the desired beam minus a beam which corresponds to measurements taken
only at the missing small spacings. This latter is a broad low amplitude pattern. Thus, the global maximum
of the true synthesized beam will be surrounded by an extended low level negative sidelobe structure. The
integral over the entire synthesized beam pattern is equal to zero; this is a consequence of g(0; 0) = 0 and the
integral over a synthesis map must therefore also be zero. The negative sidelobe regions produce a depression
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of the zero level which varies slowly over the map in a way which depends upon the detailed distribution and
intensities of all sources in the field. This does not cause problems studying isolated small diameter sources,
because the local zero level is sufficiently well determined by the surrounding empty parts of the map, but
one has to be careful when calculating brightness temperature and flux densities of extended sources. These
problems are avoided if the synthesis measurements are complemented by a survey of the same field obtained
with a filled aperture telescope whose diameter is larger than the radius of the central gap in the u; v plane(see
e.g. Rots, 1975. The extrapolation of large-scale structure in synthesis maps has also been described by Braun
and Walterbos (1985)).
In some observations, notably at low declinations, it is unavoidable that shadowing of one dish by another
occurs (see section 9). Shadowing is a problem because you can only, make a proper correction for the field
center. The effect of shadowing is always more on one side of the field than the other. A correction for the
field center is a good approximation for a point source (e.g. a calibrator) but no use for an extended field.
Many people simply delete shadowed data.
The dynamic range of the telescope is determined by the general sidelobe level caused by those effects —
atmospheric fluctuations and instrumental instabilities— which cannot be calculated exactly. A weak source
can only be determined if it is well above the random noise level on the map and the general sidelobe
interference due to strong sources in the field. High dynamic range mapping can be achieved using special
reduction techniques (e.g. Noordam and de Bruyn, 1982).
The term ‘confusion’ is usually employed in radio astronomy to refer to the fact that every observed field
contains a large number of weak sources. These cause deflections that merge to a noise-like distribution over
the map. For normal observations with the Westerbork telescope at 1415 MHz (or higher frequencies) this
‘confusion noise’ is below the sensitivity limit and has no influence on the interpretation of the synthesis
maps. At 608 MHz, however, the greater flux density of most sources and the larger size of the synthesized
beam combine to raise the confusion noise to a level greater than the sensitivity limit. The ‘confusion’ problem
here is to decide how many deflections on a map can be interpreted as due to individual (point) sources rather
than to a blend of many weaker sources. An often stated rule of thumb is to accept the largest deflections as
individual sources but not to count more sources than what corresponds to an average of one source per 20-30
beam widths. The situation is even more complicated when the beam is accompanied by a prominent sidelobe
pattern such as a set of grating rings. The statistical theory of the confusion and the influence of the detailed
shape of the reception pattern have been discussed by Burns (1972). To reduce the problem of confusion more
spacings should be measured to fill the u; v-plane better.
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PART II

CHAPTER 6

THE COORDINATE SYSTEM

Ed. O.M. Kolkman based on text by W.N. Brouw (1972) and A.R. Thompson et al. (1986)

After Fourier transforming a set of visibilities we obtain a brightness distribution. We now discuss the relation
between the several coordinate systems used for Westerbork data.

6.1 u; v AND l;m COORDINATES

In this section we will introduce the (u; v) and (l;m) coordinate systems.
The following discussion is only valid for east-west arrays.
The equatorial coordinate system (x; y; z) is defined by the unit vectors:

êx which points in the direction � = 0�; h = 0h,
êy which points in the direction � = 0�; h = �6h and
êz which points in the direction � = 90�.� and h are the declination and hour angle respectively. In this coordinate system
the baseline vector D�, pointing from east to west with length D� can be written
as 0@ DxDyDz 1A = D�0@ 0�1

0

1A (6.1)

NORTH POLE
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EAST
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e
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If we point to a source in the direction (�0; �0) (and associated hour angle h0) then the direction vector s0 is
given by 0@ sxsysz 1A = 0@ cos �0 cosh0� cos �0 sinh0

sin �0

1A (6.2)

The geometrical delay D� � s0 can thus be written as D� cos �0 sinh0.
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The astrometric coordinate system is used for describing a tracking interferometer. The unit vectors of this
orthogonal coordinate system are:

êu which points from west to east as seen from the source,
êv which points from south to north as seen from the source and
êw which points from the source to the observer.

Let us first define Du � u, Dv � v and Dw = D� � s0 (=the delay). Then the
following transformation rules apply:0@ uvw 1A = 0@ sinh cosh 0� sin � cosh sin � sinh cos �

cos � cosh � cos � sinh sin� 1A0@ DxDyDz 1A
From the above and eq. 6.1 we can immediately see that:u = �D� cosh0 (6.3)v = �D� sinh0 sin �0 (6.4)

eu NORTH

SOUTH

source

EAST

WEST

ew

e
v

h=0

h

When working with data from east-west interferometers it is common to define the coordinates l and m to
describe the sky brightness distribution. � = � lm �

(6.5)

The origin of the (l;m) coordinate system is the field center s0 = (�0; �0). Below we will establish the relation
between the (l;m) coordinates and the sky coordinates s(�; �).
RELATION BETWEEN (�; �) AND (l;m)
Let us rewrite equation 2.1 in terms of (u; v) and (l;m) coordinates:V(D�) = Z

4� B0(�)e�j2�D���dΩ =V(u; v) = Z Z B0(l;m)e�j2�(ul+vm)dldm (6.6)

S
0S

φ

Now consider the phase term � = 2�(ul+ vm) in the equation above. This phase term can be rewritten using
the components of D� (equation 6.3 and 6.4):� = �2�D�(l cos h0 +m sin �o sinh0) (6.7)

Remember that for a delay tracking array this phase term is exactly the difference between the path length
difference between two telescopes pointing at s and the path length difference between two telescopes point-
ing at s0. i.e. ∆Φ = 2�(D� � s � D� � s0). The path length difference with respect to the direction(�; �) equals 2�D� cos � sin(h0 � � + �0) while the path length difference in the direction (�0; �0) equals
2�D� cos �0 sin(h0), and hence we can also write the phase term � in the following way:� = 2�D�(cos � sin(h0 � �+ �0) � cos �0 sinh0) (6.8)

From equation 6.7 and 6.8 we obtain the following relations between (�; �) and (l;m):l = � cos � sin(�� �0) (6.9)
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The projection from (�; �) to (l;m) is called the North Celestial Pole projection.

6.2 THE DIFFERENCE BETWEEN 3D AND E-W COORDINATES

It is important to note that the (u; v) coordinate system considered above is positioned in a plane with the pole
as reference. This is an important simplification which can be made for E-W arrays. For 3D arrays one uses(u0; v0; w0) coordinates. In the corresponding image coordinate system the point spread function of the beam
is not constant while for our NCP coordinate system the PSF is constant over the field.
For more details see Thompson et al.(1986) section 4.2 and 4.31

6.3 REFERENCES

Brouw, W.N. (1971): Ph.D. Thesis, University of Leiden.

Thompson, A.R., Moran, J.M. and Swenson Jr., G.W. (1986): “Interferometry and Synthesis in Radio
Astronomy”. John Wiley & Sons, New York.. ISBN 0-471-80614-5. (see also review in part II
Chapter 9.1, book 3).

1Note the notation in this document differs from the primed notation in this book
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CHAPTER 7

TEMPERATURE, BRIGHTNESS AND

SENSITIVITY

by O.M. Kolkman based on text from the books mentioned in section 9.1 and text from the old manual ed. by
A.G. Willis

Note: We only discuss the theory here. For the calculation of sensitivity for the WSRT we refer to part III,
chapter 2.

7.1 ANTENNA TEMPERATURE

In radio astronomy the concept of temperature is an important one. This has historical and practical reasons
we will not get into here. The main assumption is that the characteristics of the signals involved are that of
thermal noise from e.g. a resistor at a temperature Tr. The bandwidth limited noise power from such a resistor
can be expressed in terms of its temperature using the Nyquist relation:Wr = kTr∆� (7.1)

where W is the power, k is Boltzmann’s constant, ∆� is the bandwidth in which the power is emitted, and Tr
is a temperature.
Using the Nyquist relation we can assign a temperature to the power measured by a radio antenna. Let us
consider an antenna measuring a power per frequency interval WA=∆� = wA. (wA is also called the spectral
power.) Now the antenna temperature can be written as TA = wA=k. The antenna temperature is not only
related to the physical temperature of the antenna but also to the temperature of the objects emitting radiation
which heats the antenna. Details of these relations can be found in the standard text books discussed in
section 9.1.
We define the effective aperture, Ae, of an antenna as a fraction, �a, of the geometrical cross-sectional area
i.e. the collecting area , AT . The power per frequency interval received from a non-polarized source with
brightnessB(�; �) observed using an antenna with a effective aperture Ae and a (normalized) antenna patternAN (�; �) (see figure 7.1) can be written as:wa = AeM 4�Z

0

B(�; �)AN (�; �)dΩ (7.2)

where the factor M depends on the type of receiver and the dipole combination used. (M = 2 in the case
we are only sensitive for one dipole direction, thus half of the power received on the aperture is actually
measured.)
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Antenna Pattern

Effective Aperture

Main lobe

Side lobes

Brightness
Distribution

Celestial Sphere

Ae

B
d

AN

AN

Ω
θ(θ,φ)

(θ,φ)

φ

φ=0

θ=0

(0,0)=1

Figure 7.1: Diagram indicating the geometry of the
antenna beam

From the equation above and the Nyquist relation we find thatkTA = AeM 4�Z
0

B(�; �)AN (�; �)dΩ (7.3)

On the other hand we know that the flux density S0 of a source with brightness distributionB(�; �), observed
by the same antenna is given by: S0 = 4�Z

0

B(�; �)AN (�; �)dΩ (7.4)S0, the flux density, has units of Watts m�2Hz�1 or 1026Jansky.
From equation 7.4 and 7.3 we find that: S0 = M kTAAe � MSm (7.5)

where Sm � kTA=Ae is called the matched flux density.
Example: Consider a single 25 meter dish, measuring continuum radiation at 92 cm. At this wavelength the
aperture efficiency �a � 0:5 so the effective aperture Ae � 12:5m. With a typical antenna temperature ofTA = 180K we find Sm � 2� 10�22Watts m�2Hz�1 = 2� 104Jansky

7.2 BRIGHTNESS TEMPERATURE

The brightness temperature is related to the power emitted by a source. Assuming that the source radiates as
a blackbody we can use the long wavelength approximation of the Planck law, the Rayleigh–Jeans Law:B(�; �) = 2kTb(�; �)�2 (7.6)
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Note that the brightness temperature does not need to be equal to the physical temperature of the source. The
relation between source temperature and brightness temperature depends on the emission mechanism. For
further details we again refer to the standard text books discussed in section 9.1.

7.3 RELATIONS BETWEEN FLUX DENSITY, BRIGHTNESS AND TEMPERATURES

From equations 7.3 and 7.6 we find a relation between the antenna temperature, TA, and the brightness
temperature, Tb: kTA = AeM 4�Z

0

2kTb(�; �)�2 AN (�; �)dΩ (7.7)

The relation between the matched flux density and the brightness temperature given by:Sm = 1M 4�Z
0

2kTb(�; �)�2 AN (�; �)dΩ (7.8)

In practice one assumes B(�; �) (and equivalently Tb(�; �)) to be constant over an area larger than the area of
the main lobe, in other words one assumes an extended source. In that case B(�; �) (or Tb(�; �)) can be taken
outside the integral and equations 7.7 and 7.8 reduce tokTa = AeM 2kTb�2

Zmain lobe AN (�; �)dΩ = AeM 2kTb�2 ΩA (7.9)

and Sm = 1M 2kTb�2

Zmain lobe AN (�; �)dΩ = 1M 2kTb�2
ΩA (7.10)

respectively. The integral
Rmain lobe AN (�; �)dΩ = ΩA is called the beam area. To make a proper estimate

of the surface brightness or brightness temperature one ought to know ΩA We will come back to this issue
below.
In the case one is measuring a point source of brightness B or corresponding Tb, positioned at coordinates(�; �) = (0; 0) i.e. the beam center, the flux and temperature relations in equations 7.7 and 7.8 trivially reduce
to kTa = AeM 2kTb�2

and Sm = 1M 2kTb�2

respectively.

7.3.1 ESTIMATES OF ΩA
The theoretical synthesized beam for a uniformly and completely filled aperture with Gaussian grading is

ΩA = 0:588362
�

sin�D�;max �D�;max
where D�;max is the length of the maximum Baseline in meters and � is the wavelength in meters.
In practice it is most straightforward to actually measure ΩA by integrating the synthesized beam. If one
works with CLEANed maps one must of course integrate over the restoring beam used by CLEAN to get ΩA.
As this usually is a two-dimensional Gaussian beam one can evaluate ΩA analytically.
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For a restoring beam: AN (Ω) = AN (l;m) = e�h� 2lbl �2+� 2mbm �2
i

ln 2
(7.11)

where l;m are sky coordinates and bl,bm are the half power beamwidths in radians. Integrating over this beam
yields:

ΩA = Z
Ω

AN (Ω)dΩ = 1Z�1 1Z�1 e�h� 2lbl �2+� 2mbm �2
i

ln 2dldm = �
4 ln2

blbm = 1:13blbm (7.12)

7.3.2 CONVERSION FACTOR Tb(K)–S(MJY)

Remember the relation between observed flux S and source brightness temperature, TbS = 2kTb�2

Zmain lobe AN (�; �)dΩ = 2kTb�2 ΩA (7.13)

Using the estimates for ΩA found above we can find the conversion factor between the flux density and
brightness temperature
Using

ΩA = 0:588362
�

sin�D�;max �D�;max
where D�;max is the maximum baseline sampled and M = 1 (i.e. both dipoles used), we findTb(K)S(mJy) = D2�;max sin �

1:62� 106
(7.14)

Note that the relation above does not depend on wavelength and is valid for line and continuum observations.
For an 2.75 km baseline we find T (K) = 4:68 sin�S(mJy).
In the case of a two dimensional Gaussian (restoring) beam we find withM = 1S(W) = 2k�2

�
4 ln 2

blbmTb(K) (7.15)

Or rewritten with S in mJy, HPBW bx and by in arcsec and substituting �� = c = 2:997 � 108m=s andk = 1:380662� 10�23J=K Tb(K) = 1:2221261� 1022�2bxby S(mJy) (7.16)

And for the 21 cm wavelength region we findTb(K)S(mJy) = 605:7383bxby ��0� �2
(7.17)

where �0 = 1420:405MHz, the rest frequency of the 21 cm emission line.

7.4 SENSITIVITY

Note: only the theory is discussed here. For the calculation of sensitivity for the WSRT we refer to part III, chapter 2.

The sensitivity of a radio telescope is usually discussed in terms that suggest that all sources of error in the
measurement are caused by random fluctuations with the well-defined statistical properties of thermal noise.
This assumption is valid only for ideal observing conditions — no interference, no scintilation and complete
stable equipment. The sensitivity is a measure of the weakest source which, in the absence of confusing
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sources, can be detected with confidence. It is often defined as the signal corresponding to the rms error
detection, � or as some multiple (usually between 2 and 5) of this number. If, for example, one wishes to
determine whether a particular optical object is a radio source, then a positive detection of� 2� at that position
may be considered significant. The probability of a 2� positive detection occurring at any specified position
is only about 1/44. If on the other hand one wants to discover previously unknown sources over a whole
Westerbork field then this factor of 2 is not sufficient: the field of view is 4� 104 larger than the synthesized
beam and one expects more than 800 positive detections of 2� or larger to occur there purely by change even
if the entire field is devoid of sources. The same level of confidence (1/44), in this case, can only be achieved
by accepting detections which are 4.6� or larger. The sensitivity for this second program is therefore 2.3 times
worse when the same map with the same rms error is used for both programs.
To calculate the sensitivity one needs to evaluate the noise fluctuations in the image how this is done is shown
below.
Let us assign a system temperature Ts corresponding to the noise power of the receiver itself and all the other
sources of unwanted noise.1 The power of this system noise is much larger than the power in the cosmic signal.
The r.m.s. fluctuations in the system noise power in terms of temperature, ∆T integrated in a bandwidth ∆�
for a time t are proportional to (∆�t)�1=2 and can be expressed in units of system temperature, Ts, by

∆T = CTsp
∆�t (7.18)

where C is a factor that depends on the particular type of receiver (C = p
2 for the Westerbork correlation

receiver.)
Using equation 7.5 we can find the r.m.s. error, �, in our determination of the matched flux density.�(Sm) = kAe CTsp

∆�t (7.19)

In the case of an aperture synthesis telescope additional correction factors come in but the relation for the r.m.s.
error in the matched flux density �(Sm) is essentially the same as above. When the number of telescopes
increases the noise in the system will decrease by 1=pNI and because a correlator may introduce some noise
a degradation factor D comes in, �g is a factor that arises from the fact that not all of the NI telescopes have
equal weight. � = D�gpNI kAe CTsp

∆�t (7.20)

We now introduce the polarization summation factor, Ps. It is equal to one over the squareroot of the number
of polarization channels NP , Ps = 1=pNP .2 Using this factor we can extract a general formula for the r.m.s.
fluctuations, ∆S, in the measured flux, S.

∆S = MPs� = MpNP D�gpNI k
2�aAT TSp2p

∆�t (7.21)

where the effective aperture, Ae can be rewritten in terms of the geometrical cross-sectional area, AT , of an
individual telescope aperture and the antenna efficiency �a:Ae = 2�aAT
The other relevant terms in equation 7.20 are:

1In general the noise power from the receiver system is the largest. However, strong sources in the field can contain a lot of noise;
especially at meter wavelengths (at which WSRT is going to observe in the future) the galaxy contains a lot of noise

2In WesterborkNP = 1 if we measure in XX or YY dipole setting, NP = 2 if we measure XX and YY dipole setting

Version: 1.0.0 August 17, 1993



WSRT User Documentation, Part II section 7.4.0 page (II)-7-6

D =a degradation factor introduced by the digital correlation process used at Westerbork which
raises the noise above that of a pure analogue correlation device.�g =a grading efficiency factor arising from the fact that unequal weights are generally given
to different interferometer pairs by the grading function applied to the data before Fourier
transformation, �g � 0:9.Ts =the system temperature. For an interferometer pair, the system temperature is given byTS =p(TF + TA)(TM + TA)
where TF and TM are the noise of the fixed telescope and the movable telescope and TA
is the antenna temperature due to the noises in the field. TA is closely similar for all fixed
and movable telescopes.NI=the number of interferometers. For aN -element interferometer this number has a maximum
of N (N � 1)=2

∆�=noise equivalent bandwidth of the observation. In the case of a continuum observation
this value is approximately equal to the total bandwidth B of the observation. For line
observations we are usually more interested in the noise per frequency channel. (∆� =B=NF for a uniform and ∆� = 2:67B=NF for a Hanning taper respectively, where NF is
the number of frequency channels.)

Usually we want to know the total flux density, S and its associated error, ∆S. They can be calculated from
the matched flux density, Sm, and its error, �, by substituting the instrumental parameter, M , which is now
dependent on the relative position of the dipoles, and considering how the error changes if we add channels to
obtain total flux.
Two examples:

EXAMPLE 1 We measure only one polarization channel (NP = 1) and with parallel dipole pairs in the two
antenna elements comprising an interferometer. The source flux density, S, then equals twice the matched
flux density, SM (so M = 2).
The observed flux in one polarization channel (say XX) SM = 1

2S � �. Normalization for channel flux gives
a response S � 2� Thus the r.m.s. error in the measured flux density is:

∆S = 2� = D�gpNI k�aAT Tsp2p
∆�t

where we have substitutedM = 2 and NP = 1 in equation 7.21.

EXAMPLE 2 We measure in 2 channels and parallel dipoles (M = 2). The total unpolarized source flux
density equals S. Observed flux density in the (XX) channel = 1

2S � �XX , in the (YY) channel the observed
flux density equals 1

2S � �YY
Averaging these signals we obtain the measured flux density S0 whereS0 = 1

2

�(S � 2�XX ) + (S � 2�YY )�
or, when adding the noise quadratically (

q
4�2XX + 4�2YY = 2

p
2�2 = 2�p2)S0 = S � �p2; assuming �XX = �Y Y = �
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CHAPTER 8

EFFECTS IN FOURIER TRANSFORMED

SPECTRA

by A.G. Willis and J.D. Bregman

8.1 INTRODUCTION

At Westerbork, visibility spectra are made by complex Fourier transformation of a time cross–correlation
function into the spectral frequency domain.1 Here we discuss some instrumental effects which influence
spectra obtained by this procedure. The discussion is basically oriented toward practical interpretation of
results obtained with the digital Fourier transform procedure used at Westerbork and is not meant as a
theoretical introduction to the subject of power spectrum analysis. For more detailed discussion of digital
Fourier transform and spectral analysis techniques the reader may wish to consult the reference list at the end
of this chapter. A short summary of general Fourier transform relations is given in chapter 4.
We first define even and odd functions. fe(t) is an even function if fe(�t) = fe(t). The Fourier transform of
an even function is an even function and is real. fo(t) is an odd function if fo(�t) = �fo(t). The Fourier
transform of an odd function is an odd function and it is imaginary. We note that an arbitrary function can
always be decomposed into a sum of an even and an odd function.
We measure a real cross-correlation function in the time domain in Westerbork. Thus since the function can
be split up in the sum of even and odd functions, the Fourier Transform in the spectral domain will always be
composed of a real part which is even and an imaginary part that is odd. This property affects especially the
shape of the spectrum obtained when the phase across the frequency band is not zero (see below).
Before we sample the time cross-correlation function the radio signals are mixed down to video frequencies
covering the range � = 0 to � = B where B is the bandwidth of the observation. Increasing frequency
channel number in an observed spectrum always corresponds to increasing video frequency but increasing
video frequency may not correspond to increasing radio frequency as different mixing schemes are used for
the various radio frequencies available at Westerbork.2 The main part of this section gives the explicit relation
between channel number and increasing or decreasing radio frequency.
The actual video bandpass is given in the schematic diagram in figure 8.1. At the low frequency side there is
a steep filter with 3kHz FWHM. At the high frequency side the spectrum is smoothly filtered to gradually fall
to zero at frequency B. The last � 7% of the band has a normalized response of less then 0.5.

1On page 2-6 we mentioned the relevant transformation in equation 2.11
2For the DCB you can get the lowest frequency at the center
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Figure 8.1: The bandpass

The video frequency is zero at all frequencies greater than B. The sampling theorem of Fourier analysis states
that since f(�) is zero for all frequencies greater than B, then its Fourier transform, the cross-correlation
function h(t) can be uniquely determined by discretely sampling at intervals ∆t = 1

2B . (Discrete sampling is
obviously necessary for the performance of a digital Fourier Transform.)
At Westerbork the maximum bandwidth is 10 MHz, so the maximum sampling rate needed is ∆t = 50
nanoseconds. If we sample the time cross–correlation function at a rate slower than 1=2B then we will
introduce significant aliasing into the video spectrum that we calculate from the sampled cross–correlation
function. We can see this effect from the schematic diagram (figure 8.2)
Referring to figure 8.2 we note that sampling the cross–correlation function at time intervals separated by ∆�
can be considered the same as multiplying the continuous correlation function by a sequence of � functions
(or III–function, pronounce as Shah-function) separated by ∆� .
We can Fourier transform the continuous function to yield the continuous frequency spectrum. Note that
formally we must calculate values in the negative frequency domain although these are not "physically"
meaningful. The Fourier transform of the time domain III-function is a frequency domain III-function whose�-functions are separated by 1

∆� = 2B. Using the property that the Fourier transform of a function equal to
two functions multiplied together (i.e. the sampled cross–correlation function) is equal to the convolution
of the fourier transform of the two individual functions, we see that the Fourier transform of the sampled
cross–correlation function is equal not to a single frequency, but a multiplicity of frequency spectra separated
by 2B in the frequency domain. Since the video frequency and its negative frequency image have a length
of just 2B we can see that we have avoided overlap of the positive frequency spectrum and its adjacent
negative counterpart. If however we made the sampling time interval, ∆� , longer we see that the III–function
in frequency space would have its � functions closer together and thus the adjacent spectra forming the Fourier
transform of the sampled cross–correlation function would begin to overlap and distort each other. This is the
meaning of aliasing. (figure 8.3)
To reduce the aliasing effects, the Westerbork bandpass response is filtered so as to drop smoothly to zero at
the maximum frequency B (see figure 8.1). We refer the reader to the book by Brigham (1974) for further
details about aliasing.
Our next difficulty arises from the fact that the Fourier transform relation states that the frequency spectrum is
related to the time cross-correlation by f(�) = 1Z�1 h(t)ej2��tdt (8.1)

i.e. we really need to sampleh(t)out to time lags of�1before we can properly determinef(�). Unfortunately,
we are impatient scientists who do not wish to wait until the end of the universe before we determine the form
of the spectrum f(�). Thus in practice we only sample the cross–correlation function over some time range
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Figure 8.5: The sinx=x function�T to +T before Fourier transforming the data. Our sampling of the cross–correlation function over only a
limited time range can be considered the same as multiplying the cross-correlation out to infinite time lag by a
window function (or taper) whose value is unity over the time range�T to T and whose value is zero beyond
these bounds. This taper (which is the same as no taper) is what we mean by a uniform taper. The diagram in
figure 8.4 illustrates this process in a schematic way.
Now remember that the Fourier transform of a function which is the product of two functions equals the
convolution of the Fourier transform of the two individual functions. The Fourier transform of the uniform
taper window is a sinx=x function. Thus the spectrum we observe will equal the true spectrum (the Fourier
transform of the proper cross–correlation function) convolved with a sinx=x function.
We set the maximum value, T , out to which we sample the time cross–correlation function equal to NF∆�
where NF is the number of frequency channels into which we wish to split up the frequency spectrum (which
ranges from video frequencies 0 toB) and ∆� (= 1=2B) is the sampling rate of the cross-correlation function.
Thus the total number of samples of the cross-correlation function that we need is 2NF since we actually
sample the cross–correlation function from�T to +T , or over the time range 2NF∆� .
The Fourier transform of a window function of value unity over the range�NF =2B to +NF =2B and of value
zero beyond these bounds is given (after normalization) byf(�) = sin

2�NF �
2B

2�NF �
2B = sin

��b��b (8.2)

where b = B=NF is the sampling interval in frequency space.
Looking at the sinx=x function in figure 8.5 we can see why we made T , the maximum time out to which we
measure the cross–correlation function, equal toNF =2B . The resulting sinx=x function given by equation 8.2
happens to have its null points, except for the central peak at frequency 0, lying exactly upon the multiples of
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Figure 8.6: Observed response to a spectral line located
between multiples of nb
b, where b is the sampling interval in the frequency spectrum.
Because the observed spectrum will be the true spectrum convolved by the function given in equation 8.2,
the observed spectral response at frequency �0 to a true monochromatic frequency source of strength unity
situated at frequency �s is given by: S(�0) = sin �(�0��s)b�(�0��s)b (8.3)

Which is just equation 8.2 except for a shift of the origin to frequency �s. We then see that if the monochromatic
source happens to lie at frequency �s which is a precise multiple of b, the frequency sampling interval, then the
observed spectrum will show a line only at frequency �s and nothing elsewhere, since all the other sampling
locations lie on nulls of the sinx=x function.
We can extend this concept to show that if we have any number of monochromatic spectral lines, each of
which is precisely located at a multiple of b, than the observed spectrum will still only show lines at precisely
those locations and zeros at the other sampling locations.
Unfortunatelymost spectral lines are neither monochromatic nor do they occur at frequencies which are precise
multiples of b. Because of the side-lobe characteristics of the sinx=x frequency function we will measure
non–zero frequency components at all discrete frequency sampling locations in the spectrum.
In the sample shown in figure 8.6 we show a true monochromatic line with phase 0� (remember we measure
a complex frequency spectrum) at a frequency �0 which lies precisely between two sampling locations. The
arrows show the magnitude and phase(0� for positive directions, 180� for the negative directions) which we
would measure for this line at different frequency sampling locations (remember that we must add in the
response due to the "image’ line in the negative frequency space). We could then use a fitting program to
find the true position and strength of the line. However significant positive or negative amplitude responses
are still measured at every frequency sampling location outside the main lobe of the sinx=x function. This
undesirable situation is called leakage; ways to reduce its effects are discussed below.
The full width half maximum (FWHM) of the sinx=x function given by equation 8.2 equals 1:2b. This gives
the effective frequency resolution of the observation (i.e. two spectral lines whose frequencies are separated
by less than 1:2b will not be distinguishable as true separate lines). However, due to the significant near–in
negative sidelobes, the noise equivalent bandwidth of a single frequency channel equals b.
We close this section by pointing out that the Fourier transformed spectral points situated at video frequency
0 can, obviously, have no phase information since its frequency is 0. The real amplitude of this spectral
point is equal to the area under the cross–correlation function as will be apparent from equation 8.1. Since
the data in this frequency channel (which is always frequency channel 0) is not astronomical useful, after the
Fourier transform has been made the data in this channel are replaced by an average of the data in all the other
frequency channels. This channel containing averaged data is then misleadingly referred to as the continuum
channel

Version: 1.0.0 August 17, 1993



WSRT User Documentation, Part II section 8.2.0 page (II)-8-6

8.2 PHASE EFFECTS

Now consider what happens when we want to accurately calibrate a spectral line observation. To calibrate
such an observation we separately observe a continuum point source whose spectral flux density, a, we assume
to be perfectly constant across the total bandwidth,B, of the receiver. We can then use the observed response
of the frequency sampling channels to calibrate the gain and phase corrections needed for each frequency
channel.
At Westerbork we can apply an on–line phase zero correction to the data. However we will assume that the
phase zero correction has not been perfect and that the visibility function of a continuum point source located
precisely at the fringe stopping center still exhibits a residual phase  on a particular baseline.  is assumed
to be constant across the bandwidthB.
To begin with, we will assume that the video bandpass has an idealized square shape; i.e. the response drops
steeply to zero at frequencyB. At frequencies less thenB the response is assumed to be of constant amplitude.
Thus in this idealized treatment we will initially ignore the actual amplitude tapering at the edges of the bands
as shown in figure 8.1
Including the negative (and Hermitian) frequency responses, the spectrum of the continuum point source is
then given by f(�) = 8>><>>: aej for 0 < � � Bae�j for � B � � < 0a cos for � = 0

0 for j�j > B (8.4)

The cross-correlation function F (t) of this function is given byF (t) = 1Z�1 f(�)e�j2��td�= 0Z�B ae�j e�j2��td� + BZ
0

aej e�j2��td�
Remembering that an integral of the formR(t) = yZx aej e�j2��td�= aej yZx (cos 2��t� j sin 2��t)d�= aej � sin 2��t

2�t ����yx + j cos 2��t
2�t ����yx�

We can integrate the expression for F (t) to giveF (t) = 2aB �cos sin 2�Bt
2�Bt + sin �1� cos 2�Bt

2�Bt ��
(8.5)

We can see that F (t) contains a term sin 2�Bt
2�Bt associated with the cosine of the phase and a term 1�cos 2�bt

2�Bt
associated with the sine of the phase which is an odd function.
We now consider what would happen if the phase were exactly zero ( = 0), i.e. we have a complete real and
even signal of amplitude a in frequency space. Then the cross–correlation function would just be proportional
to our friend the sinx=x function which here has the form sin 2�Bt

2�Bt . Now remember that we sample the
cross–correlation function, F (t), at time increments of ∆� = 1=2B. We then see that excepting time t = 0,
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we sample this cross–correlation function at precisely its null points. We only have measured response at 2aB
at time t = 0 and zero elsewhere. This is just a �, or impulse, function.
We remark that in the case of discrete sampling, it is now necessary to multiply the impulse response by 1

2B
to obtain an impulse signal, a, which correctly represents the true area of the continuous sinx=x function in
the time domain. In the case of the continuous transform this is not necessary.
Since the measured cross–correlation function is zero except at t = 0, we can see that it is unimportant in
this case that we stop measuring F (t) at a maximum time T = NF

2B because the concept of a window (taper)
function has become meaningless.
The fourier transform of the � of area a at t = 0 is a function of constant amplitude a out to�1 in frequency
space, so we have effectively recovered the function given by equation 8.4 which just has constant amplitudea over the range�B to B when  = 0
The effects on the sine component of the signal, �a sin for � less then 0 and a sin for � larger then zero,
which is an odd function, are more difficult to calculate. When sin is non–zero, the time cross–correlation
function contains a contribution from the term 1�cos 2�Bt

2�Bt which is also an odd function. Since the time
sampling increment is ∆� = 1

2B we only measure 1�cos 2�Bt
2�Bt to have values of zero at every other sample point

(see figure 8.7). At the sample points in between we measure 1�cos 2�Bt
2�Bt near or at absolute maximum. Thus

it is clear that in this case when we measure 1�cos 2�Bt
2�Bt only out to limits of �NF

2B we really have implicitly
multiplied the function as it stretches out to �1 by the uniform taper window function with value unity
between the time limits�NF

2B and value zero beyond these bounds.
Thus, when we transform the function 1�cos 2�Bt

2�Bt as measured between the limits �MF
2B to NF

2B back to frequency
space we obtain our sine component of the 2B frequency signal but it is now convolved with the transform of
the window(taper) function. This transform was given by equation 8.2.
It is clear from equation 8.4 that the sine component of the signal has a discontinuous jump from �a sin to+a sin at video frequency 0. Thus our observed spectrum of the sine component of the signal will be the
convolution of this sharp rectangular edge with the sinx=x function given by equation 8.2.
To derive the resulting observed spectrum we shall neglect the fact that the value of ja sin j also jumps sharply
to zero at j�j = B and assume that ja sin j is constant out to values of � = �1.
We justify this assumption by pointing out that the upper� 10% of the actual video bandpass used at Westerbork
is tapered to smoothly fall of to zero response at frequency B. Thus any effects in the observed spectrum due
to convolution of the sinx=x function with this smoothly tapered edge are negligible in comparison with the
effects due to the convolution with the sharp edge assumed at frequency 0.
Because of this convolution, the observed sine component of the signal will exhibit a ripple pattern which is
most dominant at frequencies close to the 0 frequency and which dies away as we move toward higher video
frequencies. For the continuous Fourier transform, the observed sine signal is given as a function of increased
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observed frequency �0, where �0 > 0, (since we finally are interested only in the positive frequencies) byfsine(�0) = a sin �0Z
0

sin ��b��b d�= a sin 2� zZ
0

sinxx dx
if we change the variable of integration from � to x, and z = ��0b . We do the discrete Fourier transform, we
sample the frequencies at discrete intervals of nbwhere n = 1; 2; 3; ::: and thus x = 0; �; 2�; :::. Values of the

function
Z z

0

sinxx dx = Si(z) are tabulated by Abramowitz and Stengun (1965) in their chapter 5. The shape

of the amplitude ripple is shown in detail in figures 8.8 and 8.9. We see that we will measure an fsin(�0)
which can deviate from the value a sin by up to 18% (at the sample frequency point b).
Since the observed sine function has an amplitude ripple so will the observed phase as the observed phase is

given by arctan
� observed sin functionobserved cosfunction�. The measured amplitude clearly exhibits a ripple since it just equalsp

sin2 + cos2.
The magnitude of the observed ripples in amplitude and phase is clearly dependent on the phase  across the
bandpass since only the term proportional to sin is affected by the convolution at a sharp edge.
In the above discussion we have neglected the actual filtering of the video bandpass on the low frequency side
by the filter with a width of 3kHz at the half power level (figure 8.1). In situations were we only observe with a
wide total bandwidthB and only a few frequency sampling points, b — the frequency sampling interval — is
much greater than 3 kHz. In such case the frequency channel centered on video frequency 0 missed a fraction�3b of its power where b is expressed in kHz. So we effectively have an absorption feature centered on zero
frequency much smaller than one channel width. Thus it is approximately a spectral point source which after
deconvolution gives a response, observed at frequency �0, of �3b S(�0) which is given by equation 8.3 with
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Figure 8.9: Values measured for fsin(�) at multiples ofnb�s = 0. Since �0 is a precise multiple of b we sample the S(�0) function at null points and no effect due to
the absorption is seen (e.g. with B = 10MHz and NF = 32, b = 312:5kHz� 3kHz). Thus for b � 3kHz
the approximation used for the above calculation, that the video bandpass has uniform response completely
across the band, is acceptable.
However, for small bandwidth observations with a large number of frequency channels, the 3kHz interval can
be of the same order or greater than b (e.g. for galactic observations it is popular to select combinations of B
and NF such that b = 2:44kHz). In such case the 3 kHz dip can extend over a few channels.
The amplitude of the ripple in the term proportional to sin will decrease because the transition from negative
to positive signal is no longer sharply discontinuous at � = 0 but smoother. However the cosine component
will now drop down to zero at � = 0, i.e. we see an absorption wedge at frequency 0.
We will now see a ripple pattern in the term proportional to cos because of the convolution of this missing
wedge with the sinx=x function given by equation 8.2.
However the amplitude and shape of the ripple pattern in the cos function will be different to the amplitude
and shape of the ripple in the sin function because in the first case the sinx=x function is convolved with an
absorption wedge while in the second case the convolution is with a ramp. Thus there will still be a ripple in
amplitude and phase whose exact shape is dependent on the relative contributions from the convolved cosine
and sine functions i.e. on the original phase  in the band.
Thus uniform (or no) taper observations should be approached with caution. The phase  0 of an observation
can easily be different to the phase  c of its calibrator because of additional extended structure , sources
away from the field center, etc. Thus the observed amplitude and phase ripple of the frequency spectrum of
an observation may be different to the observed amplitude and phase ripple of the calibrator. Consequently
the observation will end up being improperly calibrated. However as we can see from figure 8.9, the ripple
will have an amplitude of more than 2 percent in only the first twenty low numbered channels. Thus if we
make a line observation with � 64 frequency channels and the line we are interested in is located in only the
central part of the band, then the uniform taper option is still a viable observing procedure if the line signal
per frequency channel is considerably greater than 25% of the continuum signal.

8.3 TAPERING

The undesirable amplitude and phase ripples discussed above are caused by the measurement of the time
cross–correlation function only out to some maximum time lags �T . When we only use uniform taper (= no
taper, see above) we have sharp discontinuities in the cross–correlation function at time lags �T
It are these discontinuities with their associated sinx=x transforms which produce the undesirable amplitude
and phase ripples in the frequency spectra.
We can reduce the effect of the discontinuities by giving the outer parts of the measured cross–correlation
function reduced weight. (Remember that with uniform taper the weight can be considered unity everywhere
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over the measured time lag and zero beyond the measured interval). At Westerbork we presently apply
this reduced weight by means of a window function or taper called Hanning (after van Hann, an Austrian
mathematician), which in the time domain has the formf(t) = �

1
2

�
1 + cos

��tT �� for jtj � T
0 for jtj � T (8.6)

This function goes smoothly to zero at time T.
The Fourier transform of this window function in the frequency domain, or the observed spectral response at
frequency �0 to a monochromatic point source situated at frequency �, is given byF (�0 � �) = 1

2
S(�0 � �) + 1

4
S(�0 � � + b) + 1

4
S(�0 � � � b) (8.7)

where S is the Fourier transformed uniform taper spectral response to a spectral point source (equation 8.1).�0 � � is a multiple of the frequency sampling interval b.F (�0 � �) has a full width half maximum of 2b. Thus 2b is the effective frequency resolution of a Hanning
tapered observation. However the near–in negative sidelobes of the Hanning convolving function are only
2% of the peak response, in contrast to the 21% negative sidelobes of the uniform taper sinx=xconvolving
function. Thus the Hanning convolving function is broader than the sinx=x convolving function but has
smaller negative sidelobes. Also we find that the amplitude and phase ripple in a Hanning tapered observation
is very small (less than � 2%).

8.4 DELAY EFFECTS

The time cross–correlation of a visibility function is obtained by correlation of two antenna signals of an
interferometer pair. Before the signals enter the cross-correlator they are fringe–stopped and delay corrected.
The first correction eliminates the Doppler frequency difference between the two elements looking at a sky
source from the rotating earth. The delay correction eliminates the path difference of the plane wave incident
on the two elements of the interferometer.
In 1980 3 a digital delay system was implemented which corrects the video frequency signal. The delay will
be accurate to within� 0:1ns in a 10s integration period. Thus, with the proper fringe stopping for zero video
frequency, there will be negligible phase slope oscillation over the video frequency band.
Delay errors can occur however and that is why when we observe HI at velocities close 0 we have to do a
calibration observation below and above the frequency of interest. If the delays were perfect one calibrator
would be OK, but if you shift frequency you usually find that the phase-zero offsets shift noticeably (typically
5�/MHz)

8.5 FAST FOURIER TRANSFORM EFFECTS

The fast Fourier transform (FFT) algorithm requires that the total number of sample points of the cross–
correlation function and spectral frequency functions each be a discrete power of 2. This means that our
sampling of these functions can not be precisely symmetric about the origins t = 0 or � = 0. The time
cross–correlation function is sampled at 2N points separated by ∆� = 1

2B . The N th point is near t = 0 and
the so called odd channel near t = �N�� . Using the FFT the 2N points of the cross–correlation function are

3Until 1980 the delay was corrected in steps of 10 m (33.3ns) at an intermediate frequency of 30 MHz in intervals of 2 minutes.
This causes the cross–correlation function to be time shifted by a maximum of about 20 ns. According to the shift theorem for Fourier
transforms (see section 4) this causes a phase slope over the band in the frequency domain. Through a change of the fringe stopping
frequency, there is no phase change for the center of the band. After correlation every data sample is corrected for the average phase slope
across the band during that integration period. Even with a good phase zero correction at the band center, this phase slope across the band
will produce, for uniform tapered observations, amplitude and phase ripples in the frequency spectra similar to those discussed above for
a constant phase offset. However, the difference between the phase at the edge of the band and the phase at the band center oscillates in
amplitude (up to 90�: i.e. differences up to �90� for a 10MHZ bandwidth) as the delay offsets change. Thus the amplitude and phase
ripple effects due to the delay offsets are averaged out when a frequency spectrum is made from a large number data samples taken with
different delay settings.
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transformed into complex frequency points of which N � 1 are useful channels at video frequencies between
0 and B.
Remember that the data centered at video frequency has no phase and is not physically meaningful. The
situation is sketched out in figure 8.10 for 2N = 8, which would correspond to requesting a spectrum withNF (= N ), the number of frequency points, being equal to 4.
The NF output frequency channels are given by the numbers 0; 1; 2; 3; :::; NF � 1
Note that theNF + 1th sample point would have a contribution from the true spectrum and the adjacent alias
spectrum and thus does not contain meaningful data. This result does not affect frequency spectra measured
with a uniform taper, but in a Hanning tapered observation, the NF th point contains a 25% contribution from
theNF +1th point (see equation 8.7 and 8.8) and must be discarded. (the data in this part of the spectrum has
very low signal anyway because of the bandpass taper, so deleting theNF th point we haven’t lost useful data)

8.6 NOISE DISTRIBUTION IN TAPERED SPECTRA

As we can see from equation 8.7 use of the Hanning window function in the time domain corresponds to
smoothing a frequency spectra Fourier transformed from a uniform tapered time correlation function with the
operation Hi = 1

4
Ui�1 + 1

2
Ui + 1

4
Ui+1 (8.8)

where the Ui are the signals in the n + 1 frequency channels (having numbers 0 through n) of a frequency
spectrum produced from uniform tapered CCF data and where the Hi are the signals in the n+ 1 channels of
a frequency spectrum produced from Hanning tapered CCF data.
We now relate the noise in a Hanning tapered channel to the noise in a uniform tapered channel. Here we
ignore the data in channels 0,1 and n of the Hanning tapered observation since they contain a contribution
from the video frequency 0 or the aliased spectrum (see above).
Thus, if we define the noise in a single uniform tapered channel to be � (assumed to be the same for all
channels) the noise in the Hanning tapered channel is�Hi = s�

1
4
�i�1

�2 + �1
2
�i�2 + �1

4
�i+1

�2= s�
1

16
+ 1

4
+ 1

16

��2= r
6
16
� = 0:61�
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Taper
Uniform Hanning

channel spacing b = BNF b
FWHM (effective frequency resolution) 1:2b 2b
noise equivalent bandwidth per channel b (8=3)b
correlation between first 0 2/3

second 0 1/6
third 0 0

Average noise per channel as a result of
summing n adjacent channels
n= one � �(3=8) 1

2

two �=p(2) � 1
2

q(1 + 1
4 )

three �=p(3) � 1
3

q(2 + 1
4 )

four �=p(4) � 1
4

q(3 + 1
4 )

...
...

...

eight �p(8) � 1
8

q(7 + 1
4 )

Table 8.1: A summary of uniform and Hanning taper
properties

Thus the noise equivalent bandwidth of a Hanning tapered channel= 16
6 = 2:67� that of an uniform tapered

channel.
However the noise in adjacent Hanning channels is strongly correlated, so that summation and averaging of
two adjacent Hanning tapered channels does not result in a

p
2 decrease in the noise.

e.g. If we add together two adjacent Hanning channels , say i and i + 1, then using the relations between
Hanning and uniform channels given by equation 8.8 we haveHAV (averaged signal) = 1

2
(Hi +Hi+1)= 1

2

�
1
4
Ui�1 + 1

2
Ui + 1

4
Ui+1 + 1

4
Ui + 1

2
Ui+1 + 1

4
Ui+2

�= 1
8
Ui�1 + 3

8
Ui + 3

8
Ui+1 + 1

8
Ui+2

Assuming the noise, �, to be the same in each of the uniform tapered channels, we find that�AV = r
1
64
�2 + 9

64
�2 + 9

64
�2 + 1

64
�2= p

20
8
� = 0:56�

Remembering that the noise in 1 Hanning channel was 0:61�we see that the addition of two adjacent channels
has resulted in a noise decreased by only a factor 0:56

0:61 = 0:92 instead of the factor 1p
2
= 0:71 expected for

two completely independent signals.
If we add together two Hanning channels separated by 2b, e.g. numbers i and i+2, then by the same procedure
as outlined above we find that the decrease is 0.82, so there is still some correlation (As is to be expected since
uniform taper channel i+ 1 contributes 1

4 signal to each of the Hanning channels i and i+ 2.)
Properties of uniform and Hanning tapered spectral channels are summarized in table 8.1.
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8.7 OTHER TAPERS

As shown above sidelobes in the frequency domain can be suppressed by tapering of the cross-correlation
function in the time domain. This can be done by a number of tapering functions. These are discussed by
Harris (1978). Three taper functions can be used at Westerbork. They are all applied before the CCF is fourier
transformed. We already discussed the Uniform (no taper) and Hanning taper above. The Hamming taper is
similar to the Hanning taper but has a narrower frequency beam and lower side lobes. For the Hamming taper
the individual frequency channels are also correlated in a similar way as for the Hanning taper (see previous
section). The sidelobes of the Hamming taper do not decrease in amplitude as rapidly as those of the Hanning
taper so the correlation involves more channels than only the adjacent, as is the case for the Hanning taper.
The differences between the Hanning and Hamming taper are indicated in the table below:

Beamwidth Hihgest side lobe
W(i) FWHM in db in %

Uniform 1.21 B=NF -6.5 22.4
Hanning 0:5 + 0:5 cos(2i�=N ) 2.0B=NF -16.0 2.5
Hamming 0:54 + 0:46 cos(2i�=N ) 1.81B=NF -21.5 0.7

where:W (i) is the discrete form of the function in the time domaini = �N
2 ;�N

2 + 1; : : : ;�1; 0; 1; : : :; N2 + 1; N2NF is the number of frequency channelsB is the bandwidth

In the frequency domain the Hamming taper can be represented by the following smoothing function (e.g.
Harris (1978)): H0i = 0:23Ui�1 + 0:54Ui + 0:23Ui+1 (8.9)

In a similar way as in the previous section it can be shown that the noise in a Hamming tapered channel is
equal to �H0i =p2(0:23)2 + (0:54)2 = 0:6303

thus the noise equivalent bandwidth will be 1=(0:63)2b = 2:52b, where b is the channel separation, B=NF .
The average noise as a result of summing n adjacent channels will be:� 1Np4 � 0:23 � (0:23� 1) + N = 1NpN � 0:708
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PART II

CHAPTER 9

BIBLIOGRAPHY AND REFERENCES

9.1 BOOK REVIEWS

This section contains some reviews of popular textbooks. The number of books on the subject is very large and
can of course not all be mentioned. The intention is to give the reader an idea where to start when searching for
literature on a particular subject. One may expect that the books discussed can be found in every astronomical
library. All necessary information to order the book is cited.

1. Tools of Radio Astronomy K. Rohlfs
Springer Verlag, Berlin (1986)
ISBN: 3-540-16188-0 / 0-387-16188-0

This book, which ‘grew out of a one year graduate course’, covers a large range of topics. The topics
are discussed briefly using a mathematical approach where possible. Although the book is written
in a compact style it can be used as a textbook for astronomers/physicist new to the subject of radio
astronomy. This book is particularly useful when searching for references on a certain topic; for each
chapter it contains general references to standard textbooks/articles.
The book is organized in 13 chapters.

Chap. 1. Radio Astronomical Fundamentals
Chap. 2. Electromagnetic Wave Propagation
Chap. 3. Wave Polarization
Chap. 4. Fundamentals of Antenna theory
Chap. 5. Filled Aperture Antennas
Chap. 6. Interferometers and Aperture Synthesis
Chap. 7. Receivers
Chap. 8. Emission Mechanisms of Continuous Radiation
Chap. 9. Some examples of Thermal and Nonthermal Radio Sources
Chap. 10. Line Radiation Fundamentals
Chap. 11. Line Radiation of Neutral Hydrogen
Chap. 12. Recombination Lines
Chap. 13. Interstellar Molecules and Their Line Radiation
Appendices on vector relations, Fourier and Hankel transform,Electromagnetic Field Quantities and Calibration

Radio Sources

2. Synthesis Imaging in Radio Astronomy Ed. R.A. Perley, F. Schwab, A.H. Bridle
Astronomical Society of the Pacific (1989)
ISBN: 0-937707-23-6

These are the proceedings of a summer school on Synthesis imaging held in Soccorro, New Mexico in
June 1988. The course was organized by the National Radio Astronomical Observatory (NRAO) for
potential users of the VLA and the VLBI network.
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The lectures in the book can be divided in two parts; One part gives an introduction into the theory of
aperture synthesis (Chap. 1-11), the other part (Chap 12-25) covers more advanced topics. This book
is very useful for beginning and experienced radio astronomers. The topics are all related to aperture
synthesis and often related to working with the VLA. This is, however, not a disadvantage because in
many respects the WSRT operates similar to the VLA. The topics are discussed in great detail by various
authors thus in various styles.
The book contains detailed discussion of aperture synthesis and related topics.

Chap. 1. Coherence in Radio Astronomy B.G. Clark
Chap. 2. The Interferometer in Practice A.R. Thompson
Chap. 3. The Primary Antenna Elements Peter J. Napier
Chap. 4. Cross Correlators L.R. D’Addario
Chap. 5. Calibration and Editing E.B. Folamont and R.A. Perley
Chap. 6. Imaging R.A. Sramek and F.R. Schwab
Chap. 7. Sensitivity P.C. Crane and P.J. Napier
Chap. 8. Deconvolution T. Cornwell and R. Braun
Chap. 9. Self-Calibration T. Cornwell and E.B. Fomalont
Chap. 10. Error Recognition R.D. Ekers
Chap. 11. Image Analysis E.B. Fomalont
Chap. 12. Spectral Problems in Imaging W.D. Cotton
Chap. 13. Wide Field Imaging I: Bandwidth and Time-Average Smearing A.H. Bridle and F.R. Schwab
Chap. 14. Wide Field Imaging II: Imaging with Non-Coplanar Arrays R.A. Perley
Chap. 15. Wide Field Imaging II: Mosaicing T. Cornwell
Chap. 16. High Dynamic Range Imaging R.A. Perley
Chap. 17. Spectral Line Imaging I: Introduction P. Roelfsema
Chap. 18. Spectral Line Imaging II: Calibration and Analysis J.H. van Gorkum and R.D. Ekers
Chap. 19. Very Long Baseline Interferometry I: Principles and Practice R.G. Walker
Chap. 20. Very Long Baseline Interferometry II: The techniques if Spectral

line VLBI
P.J. Diamond

Chap. 21. Solar Imaging with a Synthesis Telescope T. Bastian
Chap. 22. Synthesis Imaging of Spatially Coherent Objects K.R. Anantharamaiah, T.J. Cornwell and R. Narayan
Chap. 23. Noise in Imaging of Very Bright Sources K.R. Anantharamaiah, R.D. Ekers, V. Radhakrishnan,

T.J. Cornwell and W. Miller Goss
Chap. 24. Synthesis Observing Strategies — A ‘Hitch-Hikers Guide’ A.H. Bridle
Chap. 25. The Design of Aperture Synthesis Arrays R.M. Hjellming

3. Interferometry and Synthesis in Radio Astronomy A.R. Thompson, J.M. Moran and G.W.
Swenson jr.

John Wiley & Sons, New York (1986)
ISBN: 0-471-80614-5

The authors of this book, who are involved in operating the VLA, lay emphasis on the technical aspects
of radio interferometry. This book is of use for the astronomers who are interested in the theory and
implementation of radio techniques, especially interferometry. However, the book is not written from an
engineer’s point of view. A clear mathematical notation is used throughout the book and mathematics
is used to clarify, not to explain.
The book can be used by both the astronomers novice in the field of radio interferometry as the more
experienced users. There is a clear division between the introductory sections and the more advanced
topics.
The book contains detailed discussion of aperture synthesis and related topics.
Each chapter contains a bibliography and references. It contains 15 Chapters.

Chap. 1. Introduction and Historical Review
Chap. 2. IntroductoryTheory of Interferometers and Correlator Arrays
Chap. 3. Further Theory of the Interferometer Response
Chap. 4. Geometrical Relationships and Other Practical considerations
Chap. 5. Design of Arrays
Chap. 6. Response of the Receiving System
Chap. 7. Design of the Analog Receiving System
Chap. 8. Digital Signal Processing
Chap. 9. Very-Long-Baseline Interferometry
Chap. 10. Calibration and Fourier Transformation of Visibility Data
Chap. 11. Image Processing and Enhancement
Chap. 12. Interferometer Techniques for Astrometry and Geodesy
Chap. 13. Propagation Effects
Chap. 14. Radio Interference
Chap. 15. Related Techniques
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4. Radio Telescopes W.N. Christiansen and J.A. Högbom
Cambridge University Press (1969, 1985(2nd ed.))
ISBN: 0-521-26209-7 (2nd ed.) / 0-521-07054-6 (1st ed.)

The writers of this book ‘... aim to present to newcomers in radio astronomy a short survey of the
development of radio telescopes (...) with enough simplified theory to enable them to understand the
fundamentals of radio telescope design. ’.
In the book there is an emphasis on the relation between aperture distribution, grading, beamshape, etc.
A number of possible antenna forms and configurations is discussed, aperture synthesis is only one of
antenna systems discussed. The chapter on aperture synthesis has been rewritten completely for the 2nd

edition.
Chap. 1. Introduction
Chap. 2. Some Theory
Chap. 3. The Steerable Parabolic Reflector (Paraboloid of Revolution)
Chap. 4. Other Types of Filled-Aperture Antennas
Chap. 5. Some More Theory
Chap. 6. Unfilled-Aperture Antennas
Chap. 7. Synthesis Techniques
Chap. 8. Sensitivity
App. 1. Celestial Coordinate System
App. 2. The Fourier Transform
App. 3. Available Correlated Power

5. Galactic and Extragalactic Radio Astronomy (2nd edition) Ed. G.L. Verschuur and K.l.
Kellerman

Springer Verlag, Berlin (1988)
ISBN: 0-387-96575-0 / 3-540-96575-0

The second edition of Galactic and Extragalactic Radio Astronomy is ‘intended for graduate students and
practicing astronomers who whish to familiarize themselves with the wealth of astronomical phenomena
that are “visible” at radio frequencies’.
The book does not discuss the technical aspects of radio astronomy. (In the first edition there was a
very good introductionary chapter on radio interferometry, but that one has been removed in the second
edition). However, a large number of astrophysical and observational topics is discussed. The book
gives a broad overview of the kind of astronomy possible using the technique of radio astronomy.
The book has 15 chapters written by different authors. Each chapter contains a section “Recommended
Reading” giving reference to standard books and articles in the field.

Chap. 1. Galactic Nonthermal Continuum Emission C.J Salter and R.L. Brown
Chap. 2. HII Regions and Radio Recombination Lines M.A. Gordon
Chap. 3. Neutral Hydrogen and the Diffuse Interstellar Medium S.R. Kulkarni and C. Heiles
Chap. 4. Molecules as Probes of the Interstellar Medium and of Star

Formation
B.E. Turner

Chap. 5. Interstellar Molecules and Astrochemistry B.E. Turner and L.M. Ziurys
Chap. 6. Astronomic Masers M.J. Reid and J.M. Moran
Chap. 7. The Structure of Our Galaxy Derived from Observations of Neu-

tral Hydrogen
W. Butler Burton

Chap. 8. The Galactic Center H.S. Liszt
Chap. 9. Radio Stars R.M. Hjellming
Chap. 10. Supernova Remnants S.P.Reynolds
Chap. 11. Pulsars D.C. Backer
Chap. 12. Extragalactic Neutral Hydrogen R. Giovanelli and M.P. Haynes
Chap. 13. Radio Galaxies and Quasars K.I. Kellerman and F.N. Owen.
Chap. 14. The Microwave Background Radiation J.M. Uson and D.T. Wilkinson
Chap. 15. Radio Sources and Cosmology J.J. Condon

6. Radio Astronomy (2nd edition) J.D. Kraus
Cygnus-Quasar Books, Ohio (1986)
ISBN: -

‘Radio Astronomy embraces a wide range of topics from astrophysical phenomena to receiver and
antenna design. The aim of this book is to bring together a balanced selection and treatment of these
topics that is elementary enough to serve as an introduction to radio astronomy yet is sufficiently detailed
to be useful as a teaching text and reference work.’.
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Radio Astronomy is one of the classic text books in the field. The more technical chapters in this book
are written from an engineers point of view.

Chap. 1 Introduction
Chap. 2 General Astronomy Fundamentals
Chap. 3 Radio-Astronomy Fundamentals
Chap. 4 Wave Polarization
Chap. 5 Wave-PropagationFundamentals
Chap. 6 Radio-Telescope Antennas
Chap. 7 Radio-Telescope Receivers by M.E. Tiuri and A.V. Räisänen
Chap. 8 The Radio Sky, Spectra, The Solar System and Our Galaxy
Chap. 9 Pulsars
Chap. 10 Extragalactic Radio Astronomy
Chap. 11 Radio Surveys
Chap. 12 SETI
App. 1 List of Radio Sources
App. 2 Messier’s List of Nebulous Objects
App. 3 Frequencies Allocated for Radio Astronomy
App. 4 Relation of Beamwidth and Side-Lobe Level to Aperture Distribution
App. 5 Noise-Temperature-Noise-Figure Chart
App. 6 Precession chart
App. 7 Equatorial- to Galactic-Coordinate Conversion

Version: 1.0.0 August 17, 1993



WSRT User Documentation, Part II section 9.2.0 page (II)-9-5

9.2 DICTIONARY

To provide quick reference to the literature and to help the aspirant and unexperienced radio astronomer cope
with the jargon we present a dictionary with a couple of the most common words in radio astronomy. We in-
cluded references to the the books from the previous section (e.g.book: No. 1 pp. 6) or to the User Documentation
(e.g. userdoc: II-9-13 ) were the concepts are introduced or explained.

aliasing — The Fourier transform from theu; v plane
to the image plane will produce a replicated
brightness distribution. If the brightness distri-
bution contains structures that are under-sampled
in theu; v-plane then structures in the replicated
brightness distributionwill overlap and aliasing
occurs.
references: book: No. 3 pp. 110-111, userdoc: part II
chapter 5.

antenna pattern — The antenna pattern, (A), also
called power pattern, describes the sensitivityof
the antenna to power from different directions.
Often normalized by dividing through the max-
imum value of the pattern, AN = A=Amax =A=A(0).
references: book: No. 1 pp. 62, book: No. 6 pp. 24 .

bandwidth smearing — Bandwidth smearing refers
to distortion occurring on the edges of maps, far
from the fringe stopping center center (=phase
center), when observing with large bandwidth.
It occurs because the phase correction is applied
for only one frequency in the band so other
frequencies will have slight phase errors, also
referred to as chromatic aberration.
references: book: No. 2 pp. 32, 247-253, book: No. 3 pp.

169.

baseline-pole — Baseline-pole is defined by the line
through the two elements of an interferometer.
For the Westerbork array the declination of the
baseline pole is defined as the declination of
the line through the fixed telescopes. An error
in baseline pole introduces a phase error in the
visibility data.
references: userdoc: part IV chapter 1.1.

channel map — Map of the brightness distribution
in one frequency channel

CLEAN — Algorithm used to deconvolve maps i.e.
remove the effects of the dirty beam.
references:userdoc: II-5-7 , Högbom (1974), book:
No. 2 pp. 167-181. book: No. 3 pp. 343-349

coherence function — The (source) coherence func-
tion is a measure of the coherence of radia-
tion coming from different points of the source.
A source is incoherent when radiation coming

from different points on the source is incoher-
ent. The coherence function is then zero.
In many textbooks the theory of aperture syn-
thesis is explained in terms of the coherence
function.
references: book: No. 3 pp. 60-63 book: No. 1 pp. 101-
105 book: No. 2 pp. 1-9 For synthesis imaging of
coherent sources see:book: No. 2 pp. 415-427

degradation factor — Factor with which the sensitiv-
ity decreases if instead of an analogue correlator
a digital correlator is used

dirty beam — The dirty beam is the Fourier transform
of the visibility coverage i.e. all the (complex)u; v points on which the visibility is measured.
In the image plane the dirty beam corresponds to
the image of a point source in the phase center.

dirty map — Dirty map is the map which is obtained
when Fourier transforming the visibilitydata. It
is the convolution of the brightness distribution
and the dirty beam.

fringe — Oscillating output signal of a correlator
correlating the signal from two antennas which
form an interferometric element. The frequency
of the oscillation is called the fringe rate or
fringe frequency. The amplitude of the fringe
depends on the power in the spatial frequency
to which the interferometer is sensitive. For a
point source the phase of the fringe is a measure
of the positionof the source relative to the phase
reference point.
references: book: No. 3 pp. 91-92, book: No. 6 pp. 6.20,
userdoc: II-2-1 , ,more about fringe frequency
for the WSRT: userdoc: III-10-1

fringe stopping — or fringe rotation reduces the
fringe rate to zero by introducing phase rotation
and extra delay. This is done to obtain maxi-
mum signal over the bandwidth and to reduce
the sample frequency with which the fringes
need to be measured.
references: book: No. 3 pp. 149 book: No. 2 pp. 19,77

grading — or illumination. The grading is a complex
function that describes the current distribution
over the aperture.
references: userdoc: II-5-1 , book: No. 4 pp. 29.
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grating ring — ellipsoidal structure around sources
in a map. They are the result of the radial sam-
pling in the u; v plane. If the u; v sampling is
done of baseline increments of ∆D� the grating
rings will be ellipsoids of semi-axes k=∆D�
and k=(∆D� sin �) radians in right ascension
and declination. Grating rings can be removed
using CLEAN.
references: userdoc: II-5-6 book: No. 1 pp. 117 book:
No. 6 pp. 6-33,34

Hamming — Taper function, in the time domain it
has the form:f(t) = �

0:54 + 0:46 cos
��tT � for jtj � T

0 for jtj � T
This function goes smoothly to zero at time T .
userdoc: part II chapter 8. book: No. 3 pp. 339

Hanning — Taper function named after van Hann,
an Austrian mathematician. In the time domain
it has the form:f(t) = � 1

2

�
1 + cos

��tT �� for jtj � T
0 for jtj � T

This function goes smoothly to zero at time T.
The Fourier transform of this window function
in the frequency domain, or the observed spec-
tral response at frequency �0 to a monochro-
matic point source situated at frequency �, is
given byF (�0 � �) = 1

2
S(�0 � �) + 1

4
S(�0 � � + b)+1

4
S(�0 � � � b)

where b = B=NF is the channel separation.
(B is total bandwidth and NF is the number of
frequency channels)
references: userdoc: part II chapter 8. book: No. 3 pp.

339

Jansky — flux density unit named after radio astron-
omy pioneer Karl G. Jansky who was the first to
measure radio radiation from the sun in 1932.
1 Jy=10�26Watts m�2 Hz�1

image domain — or image plane contains a descrip-
tion the brightness distribution as function of
some coordinate on the sky.

mosaicing — Process of combining multiple obser-
vations with different pointings into one single
map with a field of view that may be larger than
the field of view of a single primary beam.
references: userdoc: part III chapter 6 book: No. 2 pp.

277-286

phase reference point — also fringe stopping point,
or phase center. Position on the sky for which,
for all observing frequencies, the phase of the
visibility function is zero. In most cases the
center of the field i.e. the pointing position is
chosen as such.
references: userdoc: part II chapter 2 book: No. 2 pp.

14 book: No. 3 pp. 80

polarization angle — Angle of linear polarized radi-
ation as measured from north (0�) through east
(90�). PA = 1=2 arctan(U=Q) where U andQ
are Stokes parameters.
references: userdoc: III-4-1

primary beam — In principle this is the antenna re-
sponse power pattern of a single antenna ele-
ment. In practice the primary beam also cor-
rects for other instrumental effects which cause
signal attenuation.
references: userdoc: part III, section 8.1.

sensitivity — is a measure of the weakest source
which, in the absence of confusing sources, can
be detected with confidence. It is often defined
as the signal corresponding to the r.m.s. error
deflections in a map due to thermal noise.
references: userdoc: II-7-3 book: No. 2 pp. 139-165
book: No. 3 pp. 155-168 book: No. 4 pp. 226-246
book: No. 6 pp. 7-10

Shah function — Function introduced by Bracewell
(e.g. 1978) also called sampling function. It is
defined by

III(x) = +1Xn=�1 �(x� n)
references:

Bracewell, R.N. (1978): “ The Fourier Transform and Its
Applications (2nd edition)” McGraw-Hill Interna-
tional Book Company. ISBN 0-07-007013-X.

userdoc: II-4-1

Stokes parameters — The Stokes parameters (I, Q,U , and V ) are used to describe the polariza-
tion properties of electromagnetic waves. I2 =Q2+U 2+V 2 is a measure for the total intensity
in a wave. U andQ are a measure for the amount
of linear polarization and V is a measure for the
amount of circular polarization. If V = 0 there
is only linear polarization. If U = Q = 0 then
the polarization is circular.
references: userdoc: part III, chapter 4. book: No. 1 pp.

36-39
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temperature, antenna — temperature related to the
power received by a radio antenna. TA = Wa

∆�k
where Wa is the power received in a frequency
band with width ∆� and k is the Boltzmann’s
constant.
references: userdoc: part II chapter 7 book: No. 1 pp.

68 book: No. 3 pp. 10

temperature, brightness — The temperature related
to the power emitted by a source (by means of
the Rayleigh-Jeans law)
references: userdoc: part II chapter 7 book: No. 1 pp.

9-13 book: No. 3 pp. 8

temperature, system — Temperature corresponding
to the noise power of the receiver and all the
other sources of unwanted noise. Important for
the determination of sensitivity.
references: userdoc: II-7-4 book: No. 2 pp. 139-165
book: No. 1 pp. 133 book: No. 3 pp. 155-168 book: No.

6 pp. 7-10

taper — or window functions are used to control the
shape of a beam after Fourier transformation.
They are used when in two cases:

– the cross correlation function (CFF) is ta-
pered to reduce the sidelobes of the beam
in the frequency domain.

– the visibilities in theu; v plane are tapered
to reduce the sidelobes of the beam in the
image plane

In the spatial frequency plane (i.e. u; v-plane)
the grading function is often used to taper the
data. ( The grading actually is the combination
of a taper and a u; v-sampling function.)
references: userdoc: part II chapter 5 and 8

tied array — in the tied array mode all telescopes
of the array are autocorrelated to obtain a large
collective area. High spatial resolution is not
obtained. This mode is used for VLBI observa-
tions when the WSRT is one station in the array.
references: userdoc: III-1-3 book: No. 3 pp. 339

VLBI — Very Long Baseline Interferometry. In
Westerbork two special backends/recorders are
available for participating in VLBI observa-
tions.
references: userdoc: III-1-3 book: No. 2 pp. 355-393

visibility— or visibility functiondescribes the bright-
ness distribution in terms of it’s Fourier compo-
nents (the fringes). (It’s units are W m�2Hz�1.)
Thompson (book: No.2 pp. 4) describes the visibil-
ity as used in astronomy ‘visibility is a complex
quantity, the magnitude of which has the di-
mension of spectral power flux density. It can

be regarded as an unnormalized measure of the
coherence of the electric field, modified to some
extend by the characteristics of the interferom-
eter.’
references: book: No. 3 pp. 55 book: No. 1 pp. 109 book:
No. 6 pp. 6-24

Westerbork Unit — equals 5mJy, unit used for the
standard WSRT visibility output on disk/tape.
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